Космос

tomcat

far away...
Команда форума
Мульти модератор
«Ангара» как срез эпохи
919878.jpg

2015-09-09T00:00:37+0300 09 сентября 2015 Игорь Афанасьев, Дмитрий Воронцов
Со времён «царь-ракеты» Н-1 ни одно из отечественных космических средств выведения не вызывало столь жарких споров, как «Ангара». Если с правого фланга звучат дифирамбы «носителю XXI века», то с левого раздаются куда менее пафосные эпитеты: «самый длинный ракетный долгострой в мире», «ракета, устаревшая, не успев родиться»… Кто же прав?


Будучи сторонниками взвешенного подхода, мы далеки от крайних оценок. «Ангара», конечно, не шедевр, но отнюдь и не «гадкий утёнок». Любое средство выведения – это отражение технических, экономических и политических условий, которые имели место при его проектировании и реализации.


Из архива журнала «Новости космонавтики»

Прежде всего, определимся в терминах.

Для доставки в космос грузов (спутников, кораблей, станций, межпланетных зондов) служат ракеты-носители, которые (исходя из соображений оптимального соотношения энергомассовых и экономических характеристик) обычно имеют несколько ступеней. Поскольку при старте их масса в 20... 100 раз и более превосходит массу полезной нагрузки, космический запуск – дорогостоящая и сложная операция, которая характеризуется удельной стоимостью 5... 50 тыс. долларов за один килограмм выводимого груза.

Цены на запуски коммерческих полезных нагрузок

Ракета-носитель Страна Масса полезного груза, кг Стоимость пуска, млн долларов Орбита запуска, наклонение/высота
«Космос-3М»
Россия 1350 10 66° / 250 км
Minotaur I США 325 15 ССО* / 700 км
Minotaur IV США 1075 20 ССО / 700 км
Shavit 1 Израиль 350 20 90° / 240 х 600 км
«Днепр» Россия 800 24 – 30 ССО / 700 км
PSLV Индия 1750 25 ССО / 630 км
Long March 2C/2D Китай 1400/1300 25 ССО / 600 км
Taurus XL США 930 35 ССО / 700 км
«Союз-2-1В»/«Волга» Россия 1400 38 ССО / 835 км
Pegasus XL США 225 36 – 40 ССО /700 км
«Рокот» / «Бриз-КМ» Россия 1150 39 – 44,6 ССО / 700 км
Vega Европа 1500 42 ССО / 700 км
GSLV Mark 2 Индия 2500 45 ГПО**
Epsilon Япония 450 49 ССО / 500 км
«Союз 2-1а» / «Фрегат» Starsem*** 4200 50 ССО / 820 км
«Зенит 3SLБ» / ДМ SLБ Россия / МКУ*** 4500 60 ГПО
Long March 3A Китай 2600 60 ГПО
Long March 4B / 4C Китай 2300 / 2900 60 ССО
Falcon 9 v1.1 США 4850 61,2 – 82 ГПО
Falcon 9 v1.1 США 13150 65 28,5° / 200 км
Long March 3B / 3C Китай 5100 – 5500 / 3800 70 ГПО
«Зенит 3SL» / ДМ SL Sea Launch*** 6500 80 – 90 ГПО
«Союз STБ» / «Фрегат МТ» Starsem*** 4900 85 ССО / 820 км
«Протон М» / «Бриз М» ILS*** 6500 90 ГПО
H-IIA 202 / 2924 Япония 4000 / 6000 100 ГПО
Delta II 7320-10С / 7920-10С США 1600 / 3000 140 ССО / 833 км
Atlas V 401 (2014) США 4750 164 ГПО
Delta IV Medium+ (4,2) / (5,4) США 6390 / 7300 164 / 225 ГПО
Atlas V 501 / 551 США 3780 / 8900 164 / 225 ГПО
H-IIB Япония 16500 182 30,4° / 300 км
Ariane 5 ES Европа 20000 274 51,6° / 300 км
Ariane 5 ECA Европа 9500 274 ГПО
Delta IV Heavy США 14220 350 ГПО
* Солнечно-синхронная орбита.
** Геопереходная орбита.
*** Провайдер коммерческих пусковых услуг российских ракет.
Таблица составлена посетителями форума журнала «Новости космонавтики» по материалам, опубликованным в открытых источниках.

Из-за значительной стартовой массы, сложности и длительности процедур подготовки ракеты-носители, как правило, запускаются с относительно небольшого числа космодромов, расположенных в фиксированных точках Земли. Диапазон реализуемых наклонений орбит запускаемых объектов ограничивается выбором трасс полёта и зон падения отделяемых элементов средств выведения (ступеней, головных обтекателей и тому подобного). Для отечественных космодромов, находящихся внутри материковой части евразийского субконтинента, вопрос определения траекторий выведения усугубляется необходимостью прокладки трасс полёта в стороне от населённых пунктов, важных и опасных объектов (заводов, электростанций, аэропортов) или территорий других государств.

Для расширения возможностей по запуску страны Большого космического клуба* стараются возводить свои космодромы вблизи побережья (или непосредственно на нем) с тем, чтобы практически вся трасса полёта ракеты была безопасной и отделяемые элементы падали в море. Таким образом устроены американские космодромы на мысе Канаверал, авиабазе Ванденберг и острове Уоллопс, европейский во Французской Гвиане, израильский на базе Пальмахим и индийский на острове Шрихарикота. С соблюдением аналогичных принципов строится новый отечественный космодром Восточный вблизи Углегорска.


Космодромы мира. Источник: wikimedia

До середины 1970-х годов подавляющее большинство средств выведения строилось на базе баллистических ракет дальнего действия (исключениями на тот момент были японские лёгкие L-4S и M-4 и сверхтяжёлые американский Saturn V и советская Н-1). Несмотря на высокую частоту пусков, уже тогда явственно ощущалась необходимость обновления парка отечественных ракет-носителей: требовалось повысить их энергетическую эффективность и отдачу с точки зрения соотношения стартовой и конечной массы, уйти от разношёрстного парка разнокалиберных изделий, ограничить число ступеней, чтобы уменьшить номенклатуру и размеры зон отчуждения земли под падение отделяемых элементов. Кроме того, хотелось получить средства для выведения космических аппаратов на орбиты с любым наклонением и на межпланетные траектории. Почти двадцатилетний опыт эксплуатации говорил о необходимости работать с изделиями, потребляющими топливо без токсичных компонентов.


Пуск конверсионной ракеты-носителя «Днепр»: на фото виден шлейф дыма двигателей и дренаж паров токсичных компонентов топлива. Источник: МКК «Космотрас»

Головные предприятия советской ракетно-космической отрасли провели соответствующие научно-исследовательские и опытно-конструкторские работы. Однако начатая в 1976 году программа создания многоразовой системы «Энергия-Буран» быстро поглотила все ресурсы. К моменту распада Советского Союза из многообразия замыслов был реализован лишь один – средний носитель «Зенит».

В 1991 году обнаружилось, что возможности нашей страны по независимому доступу в космос резко ограничены: парк носителей, производимых отечественными предприятиями, сузился, а космодром Байконур – единственное место, из которого на тот момент могли запускаться пилотируемые корабли и геостационарные спутники, – оказался на территории суверенного Казахстана и стал предметом нешуточных межгосударственных споров.


Стартовые комплексы тяжёлых ракет-носителей «Протон», способных запускать спутники на геостационарную орбиту, существуют только на космодроме Байконур. Источник: Роскосмос

Конечно, Россия располагала стартовыми комплексами в Капустином Яру, недалеко от Астрахани, и Плесецке, вблизи Архангельска. Но первый мог обслуживать лишь лёгкие носители, второй был «заточен» под решение проблем Министерства обороны, и существующие ракеты не позволяли запускать с него спутники на геостационарную орбиту. Имеющиеся средства выведения не охватывали весь спектр поставленных задач.

Для решения проблемы гарантированного независимого доступа в космос постановлением Правительства РФ от 15 сентября 1992 года было утверждено техническое задание на новый ракетный комплекс тяжёлого класса, способный экономически эффективно и надёжно запускать полезные нагрузки на все возможные орбиты из Плесецка. Вскоре к последнему прибавился ещё и новый космодром Свободный, который предполагалось создать на базе позиционного района дальневосточной дивизии Ракетных войск стратегического назначения (РВСН) с центром в посёлке Углегорск Амурской области.

Ill1.04.jpg

Космодром Свободный предполагалось создать на базе позиционного района дивизии РВСН в Амурской области. Источник www.geocaching.su

В конкурсе эскизных проектов (шифр «Ангара»), объявленном Министерством обороны и Российским космическим агентством, принимали участие все ведущие ракетные предприятия – самарское Центральное специализированное конструкторское бюро (ЦСКБ), миасское КБ машиностроения (в 1993 году переименовано в Государственный ракетный центр (ГРЦ) «КБ имени В. П. Макеева»), подмосковное Научно-производственное объединение (НПО) «Энергия» имени академика С. П. Королёва и московское КБ «Салют» (с июня 1993 года входит в Государственный космический научно-производственный центр (ГКНПЦ) имени М.В. Хруничева).

В финал конкурса вышли предложения НПО «Энергия» и ГНКПЦ, которые строились на принципах унификации наземной и ракетной частей комплекса. Тяжёлая экономическая ситуация в стране вынуждала сводить к минимуму затраты на создание новых систем. Выход виделся в разработке носителя на базе элементов и составных частей уже имеющихся ракет и использующего уже построенные стартовые и технические комплексы – например, для «Зенита»: их строительство на космодроме Плесецк началось во второй половине 1986 года.

Коллектив из Подлипок разработал кислородно-керосиновый носитель, первая ступень которого состояла из трёх блоков с двигателями РД-180 разработки Научно-производственного объединения энергетического машиностроения (НПО «Энергомаш») – фактически двухкамерными вариантами четырёхкамерного РД-171, летавшего на первой ступени ракеты «Зенит». Вторая ступень заимствовалась от «Зенита», но имела увеличенные размеры. Диаметр отсеков всех ступеней не превышал 3900 мм и позволял транспортировать полностью собранные блоки по железной дороге без остановки встречного движения.

Разработчики из Филей предлагали ракету с форсированным кислородно-керосиновым РД-171 на первой ступени и кислородно-водородным РД-0120 на второй (этот двигатель разработки Конструкторского бюро химической автоматики (КБХА) стоял на центральном блоке носителя «Энергия»). «Ангару» предполагалось собирать из транспортабельных блоков диаметром 3900 мм. Преимуществом проекта ГКПНЦ считались большая готовность материальной части и меньший уровень вмешательства в «зенитовский» стартовый комплекс. Возможности универсализации стартов («почти готового» на Плесецке и закладываемого в Свободном) обуславливались унификацией хвостового отсека, а также стартовых опор, заправочно-дренажных автостыков, быстроразъёмных соединений гидро-, пневмо- и электромагистралей.


Ракеты-носители, предложенные НПО «Энергия» (слева) и ГКНПЦ имени М. В. Хруничева. Интересный вариант с переливом топлива (в центре) был отвергнут. Рисунок Д. Воронцова

Фактор готовности сыграл решающую роль: в сентябре 1994 года победу в конкурсе одержал Центр Хруничева. К дальнейшей разработке был рекомендован проект, «основанный на многолетних проектно-изыскательских работах ГКПНЦ по ракетам-носителям, их созданию и эксплуатации, с учётом прогнозируемых требований и реальных производственных возможностей предприятий отрасли». Проигравшей команде «Энергии» предлагалось довольствоваться ролью субподрядчика – ей поручили проектирование второй ступени «Ангары».

Сравнение ракет-носителей «Протон-К» и «Ангара-А5» (вариант 1996 года)

Параметры «Протон-К» Предложение ГКНПЦ Предложение НПО «Энергия»
Число ступеней
3 + разгонный блок 2 + разгонный блок 2 + разгонный блок
Число маршевых двигателей* 12 3 5
Число транспортабельных модулей** 11 8 6
Компоненты топлива Долгохранимые токсичные Криогенные нетоксичные Криогенные нетоксичные
Масса компонентов топлива (в ракете/в разгонном блоке), т 644,35/18.0 595/18,7 773,6/18,5
Масса конструкции, т 53,65 79,85 96,40
Стартовая масса, т 698 674.2 905
Стартовая тяга, тс 901 767 1176
Габариты (высота/поперечный размер), м 57,24/7,40 52,4/11,9 59,0/11,9
Полезная нагрузка:
- на низкой околоземной орбите, т 20,0 Более 26,0 25,0
- на геопереходной орбите, т 4,35 6,9 6,6
- на геостационарной орбите, т 2,6 3,2 (4,5) 3,0 (4,35)
Первый старт 10 марта 1967 года По плану – 2005 год По плану – 2005 год
* Включая разгонный блок.
** Включая разгонный бок и головной обтекатель.
*** С разгонным блоком «Бриз-М» (в скобках – с кислородно-водородным разгонным блоком).

Внешне выигравший вариант смотрелся, мягко говоря, странно. Хотя ракета скомпонована по оптимальной схеме деления «тандем», обе ступени выполнялись поблочно, с параллельным расположением топливных (несущие в центре, подвесные – сбоку) баков. По замыслу разработчиков, такая компоновка не только давала преимущество в условиях габаритных ограничений при железнодорожной транспортировке, но и обеспечивала минимальную массу конструкции. По сравнению с обычным, продольным размещением баков достоинства выбранной компоновочной схемы обуславливались следующими обстоятельствами:

  • уменьшением в 1,5–2 раза длины носителя;
  • снижением массы выносных (четыре из шести) баков, ненагруженных продольной сжимающей силой;
  • отсутствием тяжелых высоконагруженных межбаковых отсеков;
  • значительным уменьшением протяжённости массивных расходных магистралей для криогенных компонентов и исключением демпферов продольных колебаний.

Первоначальный вариант ракеты-носителя «Ангара» смотрелся необычно из-за подвесных баков на первой и второй ступенях. Графика А. Шлядинского

Использование выносных баков как на первой, так и на второй ступенях повышало жёсткость конструкции без увеличения лобового сопротивления ракеты, поскольку при этом её мидель (наибольшее по площади поперечное сечение. — прим. ред.) оставался неизменным и определялся поперечными габаритами первой ступени (как и у всех носителей того времени).

Считалось, что унификация с хорошо освоенной в Центре Хруничева технологией и налаженным производством баков, головных обтекателей и систем управления от «Протона-М» позволят снизить расходы на создание носителя.

Сборку «Ангары» предполагалось производить на технической позиции космодрома по схеме, отработанной для «Протона», что обеспечивало минимальные сроки и затраты на подготовку ракеты к пуску. Заправочная инфраструктура должна была строиться с учётом опыта эксплуатации носителя «Энергия» с использованием российского оборудования и производственной базы жидкого водорода.


Сборку блоков «Ангары» предполагалось осуществлять на космодроме с учётом технологий, отработанных для «Протона». Фото А. Казака

При штатном выведении с космодрома Плесецк предусматривалось падение отработавших элементов в районы, отведённые для «Зенита». Более того, разработчики мечтали в будущем реализовать управляемый спуск первой ступени, имеющей необычную компоновку, с точным приземлением на ограниченную площадку: они считали возможным (в случае достижения значительного ресурса двигателя) осуществлять «мягкую» посадку ступени с целью её многократного использования.

Несмотря на объективные преимущества, решение ГКНПЦ имени М. В. Хруничева показались оппонентам далеко не лучшим. Вот, например, обычный отзыв: «Сказать, что ракета некрасива, значит ничего не сказать. Дизайн её откровенно уродлив из-за громоздких навесных баков на обеих ступенях. Недаром этот вариант получил прозвище «Чебурашка» или «Ушастая «Ангара». Однако основным реальным недостатком проекта было, пожалуй, низкое соотношение тяги двигателя и массы ракеты на старте.

Как бы там ни было, 6 января 1995 года был выпущен указ Президента РФ о создании космического ракетного комплекса «Ангара», которое объявлялось задачей особой государственной важности, поскольку должно было обеспечить стране независимый гарантированный доступ в космос.

Через семь месяцев, 26 августа 1995 года, было выпущено соответствующее постановление Правительства РФ. Носитель, создаваемый в рамках проекта, должен был прийти на смену «Протонам» и «Зенитам». Головным разработчиком и производителем комплекса «Ангара» определялся ГКНПЦ имени М. В. Хруничева, государственными заказчиками – Министерство обороны и Российское космическое агентство. Лётные испытания предполагалось начать в 2005 году с космодрома Плесецк.


Головным исполнителем проекта «Ангара» был выбран ГКНПЦ имени М. В. Хруничева. Фото И. Маринина

Работа началась на фоне ухудшающейся экономической ситуации, которая не позволяла осуществлять плановое ритмичное финансирование, что сразу же отрицательно сказалось на сроках реализации этапов проекта. Рубль стремительно дешевел, а стоимость ресурсов (электроэнергии, воды, материалов) и услуг росла. Бюджетных денег едва-едва хватало на разработку ракеты «на бумаге»… С другой стороны, удалось договориться с Казахстаном об аренде космодрома Байконур на приемлемых для России условиях, что сняло остроту проблемы запуска геостационарных спутников с помощью носителей «Протон». Оба эти фактора приводили к тому, что со стороны казалось, будто бы Росавиакосмосу – гражданскому космическому агентству России – «Ангара» не слишком-то и нужна, да и Министерство обороны продолжало строить программу пусков на основе уже имевшейся номенклатуры ракет.

В это же время удачная конъюнктура рынка и изменившийся взгляд бывших потенциальных противников сделали реальными планы коммерческого использования «Протонов», прежде всего из-за создания с корпорацией Lockheed совместного российско-американского предприятия. Сначала LKEI (Lockheed Khrunichev Energia International), а потом ILS (International Launch Services) взялись за маркетинг российского носителя на западном рынке и запуски спутников иностранных заказчиков.

«Энергия», ставшая Ракетно-космической корпорацией и так и не проявившая особого энтузиазма в разработке «Ангары», занялась собственными планами, а в 1996–1998 годах и вовсе переключилась на гораздо более интересную программу Международной космической станции.

Оставшись один на один с проектом, ГКПНЦ имени М.В. Хруничева был вынужден работать над «Ангарой» за собственные деньги. Запутанная и неэффективная схема государственного финансирования фактически без авансовых предоплат заставляла руководство фирмы искать способы снижения затрат. Этот период в официальной истории проекта описывается фразами: «В ходе дальнейших исследований в 1996–1997 году концепция комплекса «Ангара» была развита и уточнена. С учётом складывающейся в стране ситуации Центр Хруничева предложил стратегию поэтапного создания носителя тяжёлого класса с использованием универсальных ракетных модулей, сохраняющую все ключевые идеи первоначального варианта и развивающую перспективные возможности».

За этими словами стоят поистине драматические изменения, прежде всего связанные с интенсивным развалом сложившейся ранее кооперации предприятий ракетно-космической отрасли: часть из них остались в других – к тому времени уже суверенных – государствах (например, несмотря на все заверения в желании продолжать работы по тематике, от космоса стали быстро дистанцироваться украинские заводы второго и третьего уровня кооперации), часть скорректировала направление деятельности, многократно сменив форму собственности и самих собственников. Даже в тех случаях, когда предприятия были не против продолжать работу «на космос», в новых условиях малосерийное производство относительно сложных деталей и узлов за те деньги, которые предлагало государство, становилось для них невыгодным и прекращалось. Номенклатура продукции, требуемой для создания новых изделий и воспроизводства старых, неумолимо уменьшалась.

Первым из проекта ушёл РД-0120: российские предприятия второй половины 1990-х оказались неспособны воспроизводить этот мощный кислородно-водородный двигатель. Серийный выпуск прекратился за несколько лет до описываемых событий, на восстановление утраченных технологий, по скромным подсчётам, требовались $1 млрд и несколько лет, что с точки зрения проекта было совершенно немыслимо. Пришлось делать «чисто керосиновую» ракету.


Из проекта «Ангара» ушёл мощный кислородно-водородный двигатель РД-0120. Из архива журнала «Новости космонавтики»

Вторым фактором стал вопрос о запуске малых спутников. В Советском Союзе он решался с помощью носителей «Космос» и «Циклон», которые являлись модификацией межконтинентальных баллистических ракет. Описанные выше процессы разрушения кооперации предприятий привели к возникновению ряда острых проблем, о существовании которых руководство отрасли раньше даже не задумывалось. В результате производство лёгких ракет-носителей остановилось, и пуски продолжались за счёт ограниченных запасов, накопленных ранее в арсеналах. Радужные надежды на гражданское применение снимаемых с вооружения стратегических ракет натыкались на суровую реальность (отсутствие денег и технологические ограничения), которая не позволяла как по мановению волшебной палочки запросто менять ядерную боеголовку на вполне мирный спутник и запускать новоявленный конверсионный носитель «прямо из шахты».

Факторы наслоились друг на друга, и в 1996–1998 годах ГКНПЦ имени М. В. Хруничева изменил проект, сформулировав концепцию модульного построения не одной ракеты-носителя «Ангара», а уже целого семейства.


В 1998 году Центр Хруничева сформулировал концепцию модульного построения семейства ракет «Ангара». Из архива журнала «Новости космонавтики»

Делалось это под предлогом необходимости создания не только тяжёлого, но и лёгкого носителя для замены «Циклонов» и «Космосов». Однако в реальности разработчики хотели одним выстрелом убить двух зайцев: сделать за бюджетный счёт требуемую основным заказчикам ракету и попытаться выйти на нарождающийся и – как казалось – очень интересный сектор рынка запусков. В тот момент интенсивно обсуждались проекты создания многоспутниковых низкоорбитальных систем связи, которые впоследствии получили название Globalstar, Iridium и Orbcomm. Формировать их предполагалось, выводя аппараты «гроздьями» на тяжёлых и средних носителях, а восполнять естественную убыль одиночными запусками на лёгких ракетах.

После нескольких итераций Центр Хруничева предложил оптимальное (как тогда казалось) семейство модульных ракет-носителей, создаваемых одними и теми же предприятиями неширокой кооперации и запускаемых с одного универсального стартового комплекса. В основе конструкции лежали два типа универсальных ракетных модулей (УРМ). На основе УРМ-1 формировались нижние, а на основе УРМ-2 – верхние ступени. Комбинируя число УРМ-1, собираемых «в пачки» от одной до пяти штук, можно было получить носители лёгкого, среднего и тяжёлого класса. Массогабаритные характеристики модулей определялись целым рядом факторов, среди которых были имеющаяся номенклатура двигателей, удобный для изготовления и транспортировки «калибр» и совокупные возможности производственной базы.

Характеристики ракетных блоков – модулей семейства «Ангара»

Параметр УРМ-1 УРМ-2
Назначение
Нижние ступени Верхние ступени
Размеры (длина/диаметр), м 25,1/2,9 5,524/3,6
Масса (конструкции/топлива), т 130,4/10,5 35/4,2
Двигатель РД-191 РД-0124А
Компоненты топлива Жидкий кислород (окислитель) – керосин (горючее)
Тяга (на земле/в пустоте), тс 196.0/212.6 -/30
Удельный импульс (на земле/в пустоте), сек 311.5/337.4 -/359
Время работы, сек 300 421
Для УРМ-1 выбрали РД-191 – однокамерную «четвертушку» от энергомашевского РД-171, для УРМ-2 – РД-0124А – видоизменённое четырёхкамерное перспективное изделие, которое разрабатывалось в КБХА для замены устаревшего двигателя третьей ступени перспективной модификации ракеты «Союз». Ни первого, ни второго двигателя в производстве не было, и это тогда никого не пугало – возможность их создания и серийного выпуска сомнения не вызывала, проекты смотрелись очень хорошо.

К началу 2000-х годов предлагаемое семейство «Ангара» состояло из пяти носителей: моделей 1.1 и 1.2 лёгкого класса, А3 — среднего и двух вариантов А5 — тяжёлого классов (один – с обычным «керосиновым» УРМ-2, а второй – с «универсальным кислородно-водородным блоком» — УКВБ — на третьей ступени). Спустя пять лет в списке остались лишь 1.2, А3 и А5.


Предлагаемое семейство «Ангара» состояло из пяти носителей: 1.1 и 1.2 лёгкого, А3 — среднего и двух вариантов А5 — тяжёлого класса. Схема ГКНПЦ имени М. В. Хруничева

Долгое время проект жил в основном виртуальной жизнью: макеты ракет возили по выставкам, в специализированной прессе обсуждались различные варианты носителей. Изучались даже более или менее экзотичные версии частично многоразовой «Ангары». Все, наверное, помнят шумиху вокруг многоразового ракетного блока «Байкал», оснащённого крылом и посадочными устройствами? Его полноразмерный макет даже возили в Париж на авиасалон, но на том дело и кончилось. Несколько позже рассматривался ещё более экзотичный вариант спасения модулей первой ступени с помощью так называемого «вертолётного подхвата» – но тут дальше обсуждений не продвинулись.

Определяющими моментами проекта считалась разработка двигателей как самых технологически сложных составляющих (изготовление отсеков ракетных модулей никаких трудностей не представляло). Тут не обошлось без трудностей — как технических, так и финансовых, но с конца 1990-х годов предприятия-разработчики рапортовали о стендовых испытаниях уже не отдельных агрегатов, а двигателей в сборе.

Ill1.12.jpg

В конце 1990-х годов НПО «Энергомаш» приступило к стендовым испытаниям РД-191 – «сердца» блока УРМ-1. Фото НПО «Энергомаш»

Сложнее оказалось с объектами на космодроме Плесецк. Из-за хронической «бескормицы» строительство стартового и технического комплекса велось крайне низкими темпами. Поскольку после 1998 года вся концепция ракеты претерпела значительные изменения, пришлось переделывать практически всё – и сделанное для «Зенита», и начатое для первого варианта «Ангары». Как признаются разработчики, «по-видимому, решение использовать имеющийся к середине 1990-х годов общестроительный задел было ошибкой…»


Поначалу темпы переделки «зенитовского» стартового комплекса под «Ангару» были невысокими

Таким образом, по всем вышеуказанным причинам (в основном из-за отставания графиков изготовления матчасти) сроки начала лётных испытаний носителя постоянно переносились.

Тут судьба проекта резко изменилась: Южная Корея, стремившаяся стать космической державой, вела разработку национального носителя KSLV-1 (Korea Space Launch Vehicle) и не справилась с трудностями. Корейцы обратились в Центр Хруничева, и разработчики из Филей спроектировали носитель на основе УРМ-1. 26 октября 2004 года был подписан контракт стоимостью несколько сотен миллионов долларов, включающий изготовление двух или трёх (в зависимости от хода лётных испытаний) блоков первой ступени. Дело было даже не в деньгах, которые ГКНПЦ мог целевым образом использовать в проекте «Ангара», – возникала возможность «за чужой счет» проверить УРМ-1 в полёте!

В том же 2004 году началось и ритмичное бюджетное финансирование проекта. Государство вплотную занялось космонавтикой и в очередной раз обнаружило, что у него нет современных носителей, которые к тому времени превратились в самый настоящий инструмент суверенитета. Военные конфликты в Югославии, Ираке и Афганистане продемонстрировали, сколь велико влияние современных космических технологий разведки, связи и целеуказания на ход боевых действий. Планирование военных операций и отражение агрессии становилось попросту невозможным без использования спутников.

Проектные характеристики ракет-носителей семейства «Ангара» (на 2009 год)

Параметры «Ангара-1.1» «Ангара-1.2» «Ангара-3» «Ангара-5» «Ангара-7»
Класс носителя
Лёгкий Лёгкий Средний Тяжёлый Тяжёлый
Стартовая масса, т 149 171 481 759 – 773 1133
Число ступеней 2 2 3 3 2
Полезная нагрузка
- на низкой околоземной орбите, т 2,0 3,5–3,8 14,6–15,1 24,5 –25,8 35,0
- на геопереходной орбите, т - - 2,4–3,6 7,5 -
- на геостационарной орбите, т - - 1,0–1,6 3,0– ,5 -
Общая длина (без головного обтекателя, м) 34,9 42,2 46,7 48,7 59,14
Длина головного обтекателя, м 6,74 6,74 13,3 (15,3) 11,6 (15,3) 25
Диаметр головного обтекателя, м 2,5 × 2,82 2,5 × 2,62 4,35 4,35 (5,1) 5,5
Живительная влага денежных потоков придала проекту второе дыхание. Начала изготавливаться матчасть для стендовых испытаний, оживилось строительство в Плесецке. Уже летом 2007 года главный конструктор КБ «Салют» Юрий Олегович Бахвалов утверждал: «В 2004 году вопрос финансирования был решён. На сегодня заключён долгосрочный контракт с Министерством обороны на создание комплекса. Деньги, которые выделены, обеспечивают начало лётных испытаний в 2010 году. У нас нет никаких сомнений в том, что эти деньги будут выделены, и мы их освоим, выполнив поставленную задачу».

В целом успешно продвигалась отработка РД-191 и РД-0124А – штатные двигатели предполагалось подготовить к первому пуску в 2009 году. Началась подготовка серийного производства УРМ-1 и лёгкой «Ангары-1.2» на омском заводе «Полет». Готовился к первому старту и южнокорейский носитель KSLV-1, получивший имя собственное Naro-1. Казалось, ещё немного, и проект «Ангара» выйдет на финишную прямую…


Подготовка к старту корейской ракеты-носителя KSLV-1 (Naro-1), в основе первой ступени которой лежит блок УРМ-1. Фото KARI

(Продолжение следует)


* Неформальное объединение государств, располагающих реально продемонстрированной национальной технологией космических полётов, включающей как минимум запуск собственного спутника собственной ракетой-носителем с собственного космодрома. Сейчас в Большой космический клуб входят Россия, США, Франция, Япония, Китай, Великобритания, страны Евросоюза (представлены Европейским космическим агентством), Индия, Израиль, Северная и Южная Корея, Иран.

«Ангара» как срез эпохи (окончание)
920173.jpg

2015-09-16T00:00:54+0300 16 сентября 2015 Игорь Афанасьев, Дмитрий Воронцов
Можно было бы сказать, что в первой части этой статьи мы рассказывали про взлеты и падения «Ангары», вот только к концу материала она так и не взлетела — и тем более не упала, хотя уже прошла долгий и достаточно тернистый путь. Во второй части поговорим о более поздних этапах жизни «Ангары» и планах, которые тянутся еще на десяток лет вперед


Кризис 2008–2010 годов больно ударил по «Ангаре»: недофинансирование проекта сдвинуло сроки начала лётно-конструкторских испытаний ракеты с 2010-го на 2012-й, потом на 2013-й и, наконец, на 2014 год.

Неприятности не ограничились финансами: 25 августа 2009 года состоялся первый старт южнокорейского носителя Naro-1, созданного при участии ГКНПЦ имени М. В. Хруничева. Пуск прошёл неудачно – ракета не вывела спутник на орбиту. Единственным утешением был тот факт, что первая ступень отработала штатно. А поскольку она, по сути, представляла собой УРМ-1, её полёт стал «боевым крещением» одного из ракетных «кубиков» «Ангары».


Первый пуск ракеты-носителя KSLV-1 (Naro-1) был неудачным. Фото Reuters

Тем не менее, несмотря на нехватку ресурсов, создание ракетно-космического комплекса продолжилось. Этому способствовало то, что собственно ракетная часть проекта к 2009–2010 годам уже прошла этап автономной экспериментальной отработки. Завершились межведомственные испытания РД-191, в декабре 2006 года на «Союзе-2» совершил первый полёт прототип РД-0124А. Летом – осенью 2009 года прошли три стендовых огневых испытания УРМ-1, в которых были раздельно отработаны полётные циклограммы бокового и центрального блоков тяжёлой «Ангары-А5», а также блока первой ступени лёгкой «Ангары-1.2». В ноябре 2010 года огневые стендовые испытания прошёл и УРМ-2.

Обычно между этими событиями и первым стартом проходит от нескольких месяцев до пары лет, но для «Ангары» этот срок растянулся на четыре года… Основным фактором торможения стало затянувшееся строительство стартового комплекса в Плесецке. Как мы помним, оно началось на базе замороженного в ноябре 1994 года «зенитовского» старта. На тот момент было освоено около 48 % капитальных вложений первой очереди строительства, ряд основных сооружений уже готовился к монтажу технологического оборудования. Последнее начало поставляться — и до середины 2000-х находилось на разгрузочной площадке космодрома.


Блоки УРМ-1 и УРМ-2 прожигались на стендах Научно-испытательного центра ракетно-космической промышленности (НИЦ РКП) в городе Пересвет Сергиево-Посадского района Московской области. Фото С. Пилипенко

Согласно распоряжению Правительства РФ от 1 февраля 2000 года, «зенитовские» сооружения, специальные и технические системы предполагалось частично использовать при создании универсального стартового комплекса «Ангара», чтобы существенно сократить затраты. Но к началу финансового кризиса было освоено не более половины капиталовложений.

Работы по созданию объектов наземной инфраструктуры подготовки и запуска космического ракетного комплекса «Ангара» проводились в рамках Федеральной целевой программы «Развитие российских космодромов на 2006–2015 годы», а разработка и изготовление ракеты – в рамках Государственной программы вооружения и Федеральной космической программы России на 2006–2015 годы.

Незадолго до своей отставки бывший глава Роскосмоса Владимир Поповкин признал ошибочным решение о строительстве «ангарского» старта на базе недостроенной наземной инфраструктуры ракеты «Зенит»: подгонка проекта, создававшегося для моноблочной ракеты среднего класса, под семейство модульных ракет потребовала существенной переделки оборудования и большого объёма земляных и бетонных работ. Пришлось ломать сооружения, разрабатывать и изготавливать заново многие системы и агрегаты. Это относится к таким ключевым элементам, как башня обслуживания, стартовый стол, транспортно-установочные агрегаты двух видов – для лёгкой, средней и тяжёлой «Ангары». В общем, по его признанию, проще и дешевле было бы всё построить с нуля.


Стартовый комплекс для «Ангары» возводился на месте недостроенной пусковой инфраструктуры ракеты-носителя «Зенит» в Плесецке. Источник

Пока возводился старт в Плесецке, лётная жизнь компонентов «Ангары» продолжилась пусками ракет-носителей Naro-1 в июне 2010 и в январе 2013 года. Второй пуск вновь завершился аварией, а в третьем ракета наконец-то вывела спутник на орбиту и впустила Южную Корею в престижный клуб космических держав.

К 2013 году стартовый комплекс был в целом построен, а технический – подготовлен к приёму ракет-носителей «Ангара». В ночь с 27 на 28 мая 2013 года эшелон с лёгкой «Ангарой-1.2ПП» («первого пуска») отправился из Москвы в Плесецк. Модули тяжёлой ракеты были доставлены на космодром к концу 2013 года. Предполагалось, что примерно в это время состоится первый пуск лёгкого носителя. Однако в ходе наземных испытаний возникли замечания по поводу как ракеты, так и стартового комплекса, в результате чего пуск «Ангары-1.2ПП» перенесли сначала на весну, а затем на лето 2014 года. Соответственно, первый старт «Ангары-А5» сдвинули на конец 2014 года.


Сборка первой лётной ракеты «Ангара-1.2ПП» перед отправкой на космодром Плесецк. Фото из архива журнала «Новости космонавтики»

Пуск «Ангары-1.2ПП» с грузомакетом космического аппарата по плановой суборбитальной траектории состоялся 9 июля 2014 года. Поскольку он изначально выполнялся в интересах проверки обоих вариантов – и лёгкой, и тяжёлой ракеты, лётное изделие имело комплектацию центрального блока носителей «Ангара-А3 »и « Ангара-А5». Как принято говорить в кругу ракетчиков, «испытания подтвердили правильность основных конструкторских решений и характеристик изделия». Полёт ознаменовал начало финишной прямой, которая вела к первому пуску тяжёлой ракеты.


Начало лётных испытаний – суборбитальный полёт «композитной» «Ангары-1.2ПП». Фото А. Моргунова

«Ангара-А5» стартовала 23 декабря, под занавес 2014 года. Хотя не обошлось без шероховатостей, носитель и разгонный блок свою задачу выполнили, доставив грузомакет спутника на геостационарную орбиту.

Успех первых лётных испытаний открыл для «Ангары» новые перспективы. В Плесецке планируется построить вторую пусковую установку на универсальном стартовом комплексе и новый монтажно-испытательный корпус подготовки соответствующих космических головных частей. Самое же главное: для новой ракеты будут возведены две пусковые установки на строящемся высокими темпами космодроме Восточный, который пришёл на смену Свободному. Такое решение было принято в 2012 году. Строительство предполагается начать в 2016 году с тем, чтобы выполнить первый пуск «Ангары» с Восточного в 2021 году. Одним из предназначений ракеты будет запуск пилотируемых транспортных кораблей нового поколения ПТК НП.


Перед пуском тяжёлой «Ангары-А5» в штатной комплектации. Фото И. Маринина

Итак, ракета начала летать. Сейчас семейство состоит из трёх базовых носителей – лёгкой «Ангары-1.2», средней «Ангары-А3» и тяжёлой «Ангары-А5». В 2008 году официально представлялись еще два «подвида»: «Ангара-А5П» (затем её обозначение поменялось на «Ангара-А5.2») среднего и «Ангара-А7» тяжёлого класса.

Обе ракеты – двухступенчатые. Первая не имеет в составе УРМ-2, разрабатывалась для конкурса на носитель ПТК НП, может летать как в беспилотном, так и в пилотируемом варианте. Вторая примерно на 40 % мощнее базовой «Ангары-А5» и предложена по инициативе Центра Хруничева в качестве средства выведения для перспективной программы лунных пилотируемых полетов. Носитель также имеет пилотируемый и беспилотный варианты.


Макеты ракет-носителей семейства «Ангара» (слева направо): А-7 повышенной грузоподъемности, А5П с пилотируемым кораблём, тяжёлая А5, средняя А3 и лёгкая А1.2 в варианте первого пуска. Фото из архива журнала «Новости космонавтики»


Схема предлагавшихся тяжёлых вариантов ракет-носителей семейства «Ангара». Рисунок ГКНПЦ имени М. В. Хруничева

Позднее в Интернете и в отраслевых изданиях мелькали эскизы и других модификаций. Например, «Ангара-А7.2В» с большим криогенным центральным блоком вдвое мощнее штатного тяжёлого изделия.

В марте 2015 года председатель научно-технического совета Роскосмоса Юрий Коптев анонсировал создание нового варианта тяжёлого носителя в варианте А5В. Десять лет назад среди предлагавшихся ракет присутствовала «Ангара-А5» с блоком УКВБ. Тогда масса груза, доставляемого на низкую околоземную орбиту (30 т), была сочтена избыточной, а сложности создания крупной криогенной ступени – чрезмерными, и вариант исчез из списка.

«Второе пришествие» ракеты с водородной третьей ступенью обеспечит, по замыслу создателей, решение задач по проведению многопусковой экспедиции на Луну с пилотируемым кораблём ПТК НП. Аванпроект носителя должен быть готов к концу 2015 года, а первый пуск с Восточного может состояться в 2024 году.


Макет перспективной «Ангары-А5В», которая должна обеспечить пилотируемую лунную миссию по многопусковой схеме. Фото А. Жарова

Прирост характеристик «Ангары-А5В» впечатляет. По сравнению с «обычной» тяжёлой ракетой её энергетика вырастет на 48 %, а по сравнению со «старым» вариантом с УКВБ – почти на 30 %. Однако чтобы достичь такого прогресса, придётся форсировать на 10-15 % РД-191. Это нетривиальная задача – сейчас двигатель уже обладает практически предельным давлением в камере. Дальнейший рост этого параметра сопряжён не только с техническим риском, но и с вероятностью снижения надежности и безопасности, что совершенно недопустимо для пилотируемого носителя. Кроме того, для «Ангары-А5В» придётся решить задачу, от которой отказались в 1995 году, – создать совершенно новый кислородно-водородный двигатель РД-0150 повышенной тяги, который по удельным параметрам должен превзойти шедевр советского двигателестроения – РД-0120. Насколько это возможно в современных условиях – вопрос открытый…

Но все эти варианты пока остаются лишь на бумаге – ГКНПЦ имеет твёрдые заказы лишь на лёгкую (1.2) и тяжёлую (А5) ракеты, на которых и сосредоточился. Их лётно-конструкторские испытания будут продолжены уже с реальными полезными нагрузками: первым в конце 2016 года на геостационар уйдёт на тяжёлом носителе AngoSat. В том же году будет запущена лёгкая ракета. Затем в 2017 году наступит перерыв, а потом частота пусков вырастет: с 2018 по 2020 год, как ожидается, будет ежегодно пускаться по две, а в 2021–2022 годах – по четыре тяжёлых «Ангары». В 2023 году планируется произвести шесть, а в 2024-2025 годах – выйти на ежегодный выпуск семи носителей «Ангара-А5».


Уже реализованные и наиболее близкие к реализации варианты «Ангары». Графика А. Шлядинского

В июле 2015 года провайдер пусковых услуг ILS начал маркетинг носителя «Ангара» для коммерческих миссий. По замыслу этого российско-американского совместного предприятия, новая ракета в паре с «Протоном-М» позволит привлекать дополнительных клиентов благодаря способности охватить практически все классы и типы космических аппаратов на всех орбитах любых высот и наклонений на рынке лёгких, средних и тяжёлых спутников. Если в начале 2000-х, начиная маркетинг модульного семейства, ILS делал акцент на коммерческом использовании тяжёлого варианта «Ангары», то сейчас рассматривает и лёгкую ракету. Последняя классифицируется как прямой конкурент для других провайдеров пусковых услуг в «малом классе», например Arianespace с ракетой Vega. В ILS сообщили, что компания планирует начать коммерческие запуски «Ангары-1.2» с 2017 года с Плесецка, а миссии «Ангары-А» – сразу после завершения строительства стартового комплекса на Восточном.

Современная ситуация на рынке пусковых услуг, связанная с приостановкой деятельности международного консорциума Sea Launch («Морской старт»), а также закрытие проекта «Циклон-4» (коммерческие запуски с бразильского космодрома Алкантара) породили ряд вариантов «нетрадиционного» использования «Ангары».


Изменения на рынке заставили приостановить работу проекта «Морской старт»

Первый – попытка внедрения на «Морской старт». «Перспективная ракета-носитель среднего класса «Ангара-А3» может быть использована в проекте Sea Launch вместо российско-украинского «Зенита», – сказал генеральный конструктор ГКНПЦ имени М. В. Хруничева Александр Медведев. – Эта идея остаётся. Мы должны дождаться некоторых решений, после этого можно будет о чем-то серьёзном говорить».

Пока основанием для таких идей служит тот факт, что оба носителя – и «Зенит-3SL», и «Ангара-А3» – способны доставлять на орбиту примерно одинаковый полезный груз (вторая создавалась для замены первой) и имеют одинаковую стартовую массу (473 т у обеих ракет). Однако конструкция ракет и их интерфейсы с наземным оборудованием совершенно различны. Поэтому, по словам Александра Медведева, рассматриваются минимум два варианта адаптации плавучего космодрома «Морского старта» и «Ангары». Первый предполагает доработку плавучего космодрома «под ракету», а второй, напротив, переделку носителя «под старт». Поскольку реализация обоих вариантов требует значительных затрат времени и денег и не подкреплена серьёзными маркетинговыми исследованиями, её целесообразность не очевидна.


Ни один из существующих и разрабатываемых вариантов носителей семейства «Ангара» нельзя использовать в проекте «Морской старт» без существенных переделок ракеты или пусковой инфраструктуры комплекса. Фото из архива журнала «Новости космонавтики»

Появилась также информация и о том, что Россия ведёт переговоры о создании стартового комплекса для ракет-носителей «Ангара» в Алкантаре. Получить доступ к космодрому, который расположен ближе к экватору, чем Гвианский космический центр, было бы большой удачей. Но встают вопросы: во-первых, в какой степени в таком повороте дел заинтересованы бразильцы, во-вторых, где взять деньги?


Недостроенный стартовый комплекс носителя «Циклон-4» в Алкантаре (Бразилия)

Отвлечёмся на некоторое время от фантазий ближайшего – и не очень – будущего, и попробуем ответить на вопросы, заданные в начале повествования. Что же такое «Ангара» в техническом смысле – шедевр, провал? Ни то ни другое. Если подходить к вопросу формально, то технические параметры носителя – относительная масса полезного груза, конструктивное совершенство ракетных блоков – находятся на уровне.

Тактико-технические характеристики основных ракет-носителей семейства «Ангара» при базировании на космодроме Плесецк

Вариант «Ангара-1.2» «Ангара-А3» «Ангара-А5»
Число ступеней
3* 3 3
Стартовая масса ракеты космического назначения, т 171 481 773
Масса полезной нагрузки, т
– на опорной орбите высотой 200 км и наклонением 63° 3,5 14,0 24,0
– на солнечно-синхронной орбите 2,4 10,0 18,0
– на геопереходной орбите высотой перигея 5500 км и наклонением 25° - 2,4 (с блоком «Бриз-М») 5,4 (с блоком «Бриз-М»)
7,5 (с блоком КВТК)
– на геостационарной орбите – 1,0 (с блоком «Бриз-М») 2,8 (с блоком «Бриз-М») 4,5 т (с блоком КВТК)
*В качестве третьей ступени используется агрегатный модуль на основе блока «Бриз-М».

Семейству вменялась в вину чрезмерная стоимость: в интернете ходит цифра в $120 млн, в которую эксперты якобы оценили затраты на пуск первого носителя «Ангара-А5». Во-первых, не совсем ясно, что означает эта цифра (точнее говоря, как она получена). Ракета на этапе лётных испытаний не несла реального полезного груза, не была оценена ни заказчиками, ни провайдерами пусковых услуг. Есть ли смысл вообще оценивать опытное изделие? При серийном выпуске все ракеты (как и любая техника) дешевеют, причём очень значительно. Если все расчёты, заложенные в проект, окажутся верными, то в будущем «Ангара-А5» даже теоретически станет обходиться дешевле «Протона-М»: у неё меньше блоков, двигателей, проще процесс подготовки и запуска.

Сравнение ракет-носителей «Протон-М» и «Ангара-А5»

Параметры «Протон-М» «Ангара-А5»*
Число ступеней
3 + разгонный блок 3 + разгонный блок
Число маршевых двигателей** 12 7
Число транспортабельных модулей*** 11 8
Компоненты топлива Долгохранимые токсичные Криогенные нетоксичные
Масса компонентов топлива (в ракете/в разгонном блоке), т 624,3/19,8 679,5/18,7
Масса конструкции****, т 48,1 58,1
Стартовая масса, т 705 773
Стартовая тяга, тс 971 980
Габариты (высота/поперечный размер), м 56,23/7,40 55,23/8,86
Полезная нагрузка*****:
– на низкой околоземной орбите, т 23,7 24,0 (24,5)
– на геопереходной орбите, т 6,35 7 (7,2)
– на геостационарной орбите, т 3,7 2,6 (3,9)
Первый старт 7 апреля 2001 года 23 декабря 2014 года
Стартовые комплексы 3 пусковые установки на космодроме Байконур (эксплуатируются) 1 пусковая установка на космодроме Плесецк (построена), 2 – на космодроме Восточный (панируются)
* В варианте с разгонным блоком ДМ-3.
** Включая разгонный блок.
*** Включая разгонный бок и головной обтекатель.
**** С разгонным блоком, но без полезного груза и головного обтекателя.
***** В скобках – при старте с космодрома Восточный.

Почему же в таком случае разработка нового носителя затянулась на долгие 20 лет, за которые во всём мире – от Соединённых Штатов и Европы до Индии и Японии – поменялось уже не одно поколение современных средств выведения, к которым относится и «Ангара»? Пожалуй, в постановке вопроса кроется и ответ.

Объективные факторы торможения процесса, лежащие на поверхности, были подробно освещены в первой части материала. Из невидимых на первый взгляд назовём следующие.

Одной из выгодных особенностей нового семейства называлась работа на экологически чистых компонентах топлива – жидком кислороде и керосине. Оба применённых в проекте маршевых двигателя не имеют аналогов в своём классе (мы уже привыкли к таким ярлыкам, которые наклеивают на нашу ракетно-космическую технику; однако не стоит забывать, что сейчас только российские двигатели работают на жидком кислороде и керосине, строятся по замкнутой схеме с высочайшими удельными характеристиками – весь остальной мир вполне обходится без этого, используя другие конструктивные решения, которые тем не менее также можно считать оптимальными и выгодными). Они сложнее двигателей, что устанавливались ранее на изделиях разработки ГКНПЦ имени М. В. Хруничева. Да и вся «Ангара» стала первым кислородно-керосиновым носителем филёвской разработки, чем существенно отличается от «гептильных» ракет, ранее освоенных предприятием. Прежде всего, в производстве использована совершенно другая технология изготовления и подготовки внутренних поверхностей под кислород. Соответственно ужесточились требования по чистоте. На ракетно-космическом заводе Центра пришлось создавать специальные «чистые» помещения под производство блоков «Ангары». Изменились процессы подготовки ракеты к пуску, а с ними осложнились и процедуры проведения огневых стендовых испытаний.


Освоение криогенных компонентов топлива потребовало существенных изменений в производственном цикле ГКНЦП имени М. В. Хруничева. Фото из архива журнала «Новости космонавтики»

Большой перерыв в разработке изделий такого масштаба (эскизное проектирование «Протона-К» аналогичного класса завершилось к середине 1970-х годов, а проект модернизированного «Протона-М», отличающийся от исходной ракеты лишь в деталях, был готов к началу к началу 1990-х) привёл к тому, что в создании системы большой сложности принимало участие новое поколение специалистов, которые многому учились «в процессе», что также не способствовало ускорению работ.

Универсальный ракетный модуль – «фундамент» семейства «Ангара» – позволяет складывать ракету «из кубиков», получая разные варианты в зависимости от требуемого класса выводимой полезной нагрузки. С одной стороны, это плюс. С другой – принципиальные решения, заложенные в основу проекта, сейчас не без основания подвергаются жёсткой критике.


По замыслу разработчиков, «из кубиков» УРМ-1 и УРМ-2 можно складывать носители любой грузоподъёмности – от лёгких до тяжёлых. Рисунок Д. Воронцова

Во-первых, принятая размерность модулей предполагала, что более востребованными будут ракеты лёгкого и среднего класса. Эти замыслы были вдохновлены проектами низкоорбитальных спутниковых систем, которые к концу 1990-х годов (то есть к моменту перехода к изготовлению базовых элементов для стендовых испытаний) «не продемонстрировали себя»: они не стали приносить коммерческой прибыли и так видоизменились, что сейчас состоят из гораздо меньшего числа спутников, срок службы которых к тому же значительно вырос. Соответственно, потребность в частых пусках лёгких носителей отпала или оказалась в разы меньше прогнозируемой. Выяснилось также, что конверсионные ракеты худо-бедно послужат примерно до начала 2020-х годов, а создать экологически чистый лёгкий носитель в условиях схлопывающейся кооперации исключительно сложно.

Во-вторых, сама по себе концепция модульного проектирования далеко не всегда полезна. В реальной жизни часть получающихся при «игре в кубики» ракет может выпасть из востребованного диапазона грузоподъемности. Так, например, оказалась практически ненужной средняя ракета «Ангара-А3», которая должна была стать заменой «Зениту». Сейчас для нее просто нет полезных нагрузок.

В-третьих, модульность может дать экономический эффект, когда снижение себестоимости от увеличения серийности оказывается больше, чем рост стоимости из-за дробления конструкции на те же модули. Но для «Ангары» такое соотношение не достигнуто по описанным выше причинам, прежде всего из-за низкой потребности в лёгком и среднем вариантах.

Ill2-16.jpg

Сравнение первоначального и окончательного вариантов «Ангары»

Многие любители космонавтики до сих пор недоумевают, почему в конце 1990-х годов, меняя концепцию проекта, Центр Хруничева не сделал ставку на уже практически готовый РД-180? С этим двигателем решалось множество проблем: упрощалась конструкция тяжёлого варианта (три УРМ вместо пяти), повышалась надежность, появлялись перспективы более простого наращивания массы выводимого груза до 40–50 т. Но в том-то и дело, что тогда разработчики решали задачи, поставленные в исходных условиях на проект. В первую очередь они состояли в создании тяжёлой ракеты на замену «Протона-М» с конкретно обрисованными полезными нагрузками, которые необходимо было запускать с Плесецка, и во вторую – в захвате рынка лёгких нагрузок. С модулем большей размерности лёгкий носитель не компоновался, а на предполагаемый рост массы коммерческих нагрузок поначалу внимания не обращали, считая, что всё решится после внедрения кислородно-водородных блоков КВРБ. Меньше тогда думали и о пилотируемых полётах на Луну или на Марс (считалось – и не без основания – что это прерогатива сверхтяжелых носителей).


Задачей исходного варианта проекта «Ангара» была замена носителя «Протон» с переносом пусков из Казахстана в Россию

Выбранная грузоподъемность тяжёлого носителя – 25 т на низкой околоземной и примерно 3 т на геостационарной орбите при старте с Плесецка – была вполне достаточной для начала-середины 1990-х. Но к тому моменту, когда «Ангара» вышла на лётные испытания с опозданием на десять лет, требовалось гораздо больше. Даже с криогенным блоком при старте с Восточного она выводит на геопереходную орбиту примерно 8 т, в то время как уже ближайшие конкуренты – Ariane 5, «Великий поход — 5», Delta IV Heavy, а в перспективе Falcon Heavy и Ariane 6 – смогут запускать туда же от 11 до 21 т полезной нагрузки.

Разгонные блоки для применения в составе ракеты космического назначения «Ангара-А5» при старте с космодрома Плесецк

Вариант разгонного блока «Бриз-М» ДМ-3 КВТК
Разработчик блока
ГКНЦП имени М.В. Хруничева РКК «Энергия» имени академика С.П. Королёва ГКНПЦ имени М.В. Хруничева
Компоненты топлива:
– окислитель Азотный тетраоксид Жидкий кислород Жидкий кислород
– горючее Несимметричный диметилгидразин Керосин Жидкий водород
Маршевый двигатель 14Д30 11Д58М РД-0146Д
– тяга в пустоте, тс 2,0 8,0 7,5
– удельный импульс, с 328,6 356 470
– число включений До 8 До 5 До 5
– суммарное время работы, сек 3200 680 1350
Габариты блока (высота/диаметр), м 2,65/4,10 6,28/3,70 11,33/4,00
Максимальное время автономного полёта, ч Не менее 24 Более 9 Более 9
Рабочий запас топлива, т 19,8 18,7 19,6
Масса конструкции, т 2,6 2,35 3,33
Масса выводимой полезной нагрузки, т
– на геопереходную орбиту 5,4 7,0 7,5
– на геостационарную орбиту 2,8 3,6 4,5
– к Луне и планетам 5,0 6,0 6,5
Попытки нарастить энергетику тяжёлой «Ангары» за счет увеличения числа УРМ-1 с четырех до шести (в «Ангаре-А7») завели идею в тупик: не удается обеспечить безударное разделение ступеней из-за плотной компоновки блоков. Поэтому инженеры были вынуждены увеличить диаметр центра с 2,9 до 4,1 м, и «Ангара-А7»… перестала умещаться в универсальный стартовый комплекс! Сейчас, в проекте «Ангара-А5В», этот недостаток пытаются устранить – за счет выжимания последних капель из двигателей…


Варианты тяжёлой «Ангары-А7» повышенной грузоподъемности требовали существенной ломки всей концепции и создания специального стартового комплекса. Иллюстрация: Adrian Mann

Как мы уже писали, из-за малой востребованности вариантов «Ангара-А3» и «Ангара-1.2» смысл в модульной концепции на основе таких УРМ-1 и УРМ-2 исчезал, и её применение привело к переразмеренности боковых и недоразмеренности центрального блоков «Ангары-А5». Например, при выбранном наборе двигателей, но с оптимальной заправкой боковых (113 т вместо 132 т топлива) и центрального (примерно 200 т против 132 т) блоков при той же стартовой массе – 773 т – носитель мог бы выводить на низкую орбиту 28–29 т безо всякого водорода. А с оптимизированной кислородно-водородной третьей ступенью получались желаемые 38 т! И если бы унифицированный модуль удалось сделать больше и оснастить его РД-180, появились бы перспективы относительно простого наращивания энергетики носителя без разработки принципиально новых двигателей.

Кстати, прекрасной иллюстрацией недостатков идеи «модульного проектирования» применительно к «Ангаре» является лёгкий носитель семейства. Как известно, модульный принцип ведёт к увеличению массы ракетных блоков, в конструкции которых необходимо учесть ВСЕ расчетные случаи нагружения для ВСЕХ ракет семейства.


В отличие от «Ангары-1.2ПП» («первого пуска»), штатная лёгкая ракета будет иметь ступени одного «калибра». Её конкурентом на внутреннем рынке выступает «Союз-2.1В» (показан справа). Рисунок Д. Воронцова

Применительно к «Ангаре-1.2» это означает использование силовых узлов (в данном случае – межступенчатого переходника), рассчитанных на передачу усилий от четырех боковых УРМ-1, которые есть в тяжёлом варианте, но, естественно, отсутствуют в лёгком. Это раз. А два – это то, что запас топлива в УРМ-2 оказался слишком большим для лёгкой ракеты – 36 т вместо оптимальных 22-23! С таким запасом топлива «Ангара-1.2» просто бы не взлетела. Поэтому логика жизни привела проектировщиков к отказу от применения на ней УРМ-2 и созданию новой – оптимальной для лёгкого носителя – третьей ступени с меньшим «калибром» (2,9 м вместо 3,6) и меньшей заправкой. И хотя ступень будет создаваться «на основе систем УРМ-2», её наличие ставит под вопрос концепцию «ракетного кубикостроения». И кстати, для лёгкого варианта разрабатывается свой специальный межступенчатый переходник. Таким образом, для семейства «Ангара» придётся изготавливать не два, а целых четыре ракетных блока: УРМ-1 для всех вариантов, УРМ-2 для «Ангары-А5», УРМ-2 «уменьшенного калибра» для «Ангары-1.2» и совершенно новую кислородно-водородную третью ступень для «Ангары-5В».

Итог есть отражение ситуации, сложившейся в 1990-х годах, когда технические решения принимались с учетом имеющихся на тот момент задач и технологических возможностей, которые чуть ли не в прах рассыпались под напором изменений, творящихся «в стране и мире». Взирая с нынешних высот на то время, приходится признать, что делать какие-то долгосрочные прогнозы, стоя на ускользающем из-под ног «песке времени», было невозможно.

В этой связи очень показателен комментарий, сделанный к первому пуску «Ангары-А5» одним из старейших специалистов отрасли Г. Е. Фоминым, который долгое время занимал пост заместителя генерального конструктора самарского ЦСКБ «Прогресс»:

«Запуск "Ангары-А5" – это очень важное дело и событие для нашей страны, – писал Георгий Евгеньевич. – Теперь для космонавтики России доступны все типы орбит при запусках с российского космодрома Плесецк. Конструкция ракеты "Ангара" – весьма совершенна. Двигатель РД-191 блоков первой ступени разработки НПО Энергомаш имени академика В. П. Глушко (г. Химки Московской области) использует в качестве топлива жидкий кислород и керосин и относится к лучшим в мире. Двигатель верхней ступени РД-0124 разработан Воронежским КБ Химавтоматики, используется на блоке третьей ступени ракеты-носителя "Союз 2-1б", обладает высокими удельными характеристиками. Система управления – цифровая, разработана ведущим с советских времён создателем систем управления боевых и космических ракет – НПО АП имени академика Н.А. Пилюгина (г. Москва), в ней учтены современные требования, решения и комплектация новейшей электронной базой отечественного и зарубежного производства. В целом ракета "Ангара-А5" полностью соответствует современному уровню мирового ракетостроения. Хочется от души поздравить специалистов Центра Хруничева, их смежников и личный состав полигона Плесецк с большим успехом!

Сравнительные характеристики существующих ракет-носителей тяжёлого класса

Параметр «Ангара-А5» «Протон-М» Atlas V 551 Delta IV Heavy Ariane 5 ECA
Космодром
Плесецк, в перспективе – Восточный Байконур Канаверал Канаверал Гвианский космический центр
Широта точки старта 62,9 град с.ш. и 51,9 град с.ш. 46 град с.ш. 28,5 град с.ш. 28,5 град с.ш. 5,2 град с.ш.
Стартовая масса, т 773 705 587 733 777
Число ступеней 3 + разгонный блок 3 + разгонный блок 2* + 5 твердотопливных ускорителей 3* 2* + 2 твердотопливных ускорителя
Масса полезного груза:
– на низкой околоземной орбите, т 24 23 18,85 28,79 21
– на геопереходной орбите, т 5,4/7,0 – 8,0** 6,15 8,9 14,22 10,5
– на геостационарной орбите, т 2,8/3,9 – 5,0** 3,7 3,85*** 6,75*** ***
Стоимость пуска, млн $ 95 – 108 80 – 100 180 – 190 230 – 255 210 – 220
* Из соображений оптимизации показателей надежности и стоимости в зарубежных носителях специальный разгонный блок не применяется – его функцию обычно выполняет штатная верхняя ступень, имеющая возможность повторного включения двигателя в полете.
** В числителе – с Плесецка, с использованием блока «Бриз-М», в знаменателе – с Восточного, с использованием блоков ДМ и КВТК.
*** Atlas V и Delta IV Heavy способны выводить спутники на геостационарную орбиту, однако при коммерческом использовании для довыведения, как правило, применяется бортовая двигательная установка, от характеристик которой зависит конечная масса аппарата.

Да, разработка [ракеты] началась в середине 1990-х годов, но хруничевцы всегда следили за требованиями времени. Ракета построена по прогрессивному блочному принципу, что позволяет комплектовать носители лёгкого, среднего, тяжёлого и сверхтяжелого классов из двух унифицированных ракетных модулей и разгонного блока. Она обладает потенциальными возможностями для совершенствования и повышения энергетических возможностей, в том числе и за счет создания нового кислород-водородного разгонного блока. Сейчас (в ХХI веке) на этих принципах построены американские семейства ракет Falcon 9, Atlas 5, Delta 4, эти же принципы положены в основу перспективных китайских ракет «Великий поход — 5» и российских «Союз-5» разработки Центра "Прогресс"».


Фото И. Маринина
 
Последнее редактирование модератором:

mikluh

Местный
Заблокирован
"Протон" вывел спутник связи "Экспресс-АМ8" на орбиту
"Экспресс-AM8" - новый российский космический аппарат, предназначенный для предоставления услуг телерадиовещания, передачи данных, услуг мультимедиа, обеспечения президентской и правительственной связи, телефонии, подвижной связи.
http://ria.ru/science/20150915/1252016280.html
 

mikluh

Местный
Заблокирован
Орбитальный телескоп «Кеплер», с 2009 года наблюдающий за звездой KIC 8462852 в созвездии Лебедя, обнаружил странные образования, которые периодически закрывают ее свет. Одно из возможных объяснений аномалии — деятельность высокоразвитых инопланетян. Директор Исследовательского центра поиска внеземных цивилизаций при Калифорнийском университете Эндрю Симион в интервью RT рассказал о том, что позволило астрономам выдвинуть столь смелую гипотезу.
 

tomcat

far away...
Команда форума
Мульти модератор
Туда, где небо становится фиолетово-чёрным. Часть 1

Туда, где небо становится фиолетово-чёрным. Часть 1

922914.jpg

03 ноября 2015 Игорь Афанасьев , Дмитрий Воронцов
Год назад, 31 октября 2014 года, во время очередного лётного испытания потерпел катастрофу первый в мире коммерческий ракетоплан SpaceShipTwo, предназначенный для суборбитальных туристических полётов в космос. Возможно, эта трагедия кардинально изменит взгляды на зарождающийся бизнес космического туризма


Итак, 31 октября 2014 года аппарат SpaceShip Two с собственным именем Enterprise разрушился в воздухе, командир воздушного судна Питер Сиболд (Peter Siebold) получил тяжёлые травмы, а второй пилот Майкл Олсбери (Michael Alsbury) погиб. Символично, что катастрофа произошла ровно через десять лет после триумфа команды разработчиков ракетоплана…


Рутан и X-Prize

Пророческие слова С. П. Королёва о «полётах в космос по профсоюзным путёвкам» начали сбываться тридцать лет назад. Правда, казалось, что «обычные люди» увидят голубой шар Земли, только когда наберёт обороты программа Space Shuttle и корабли многократного применения, «на два порядка понизив стоимость космических миссий», станут летать по нескольку раз в месяц. Солнце, возвещающее утро новой эры, выглянуло из-за горизонта 28 января 1986 года и... через 73 секунды ушло за тучу. Точнее, утонуло в облаке взрыва. Вместе с шестью астронавтами «Челленджера» погибла Шэрон Криста Маколифф (Sharon Christa McAuliffe) – первая непрофессиональная участница космического полёта, призёр всеамериканского конкурса «Учитель в космосе». Она прошла трёхмесячные ускоренные курсы подготовки и должна была вести урок с орбиты. За страшной катастрофой в прямом эфире наблюдал практически весь мир...


Первой космической туристкой (непрофессиональным участником космического полёта) должна была стать Криста Маколифф

Говорят, что именно после этого случая американский Сенат принял закон, запрещающий непрофессионалам полёты в космос.

Примерно в то же время в Советском Союзе на волне программы «Интеркосмос», «перестройки, гласности и нового мЫшления» стали просматриваться возможности выполнения коммерческих (то есть за реальные деньги, а не по виртуально-неосязаемому «обмену») космических полётов иностранных граждан в развлекательных или научно-исследовательских целях.

В декабре 1990-го и в мае 1991-го в составе экипажей кораблей «Союз» в космос слетали японский журналист Тоёхиро Акияма (秋山 豊寛) и британский химик-кондитер Хелен Шарман (Helen Patricia Sharman). Их экспедиции на станцию «Мир» проводились в рамках частнофинансируемых негосударственных проектов (впрочем, до сих пор остаются некоторые сомнения в коммерческой стороне дела, особенно в последнем случае).


Тоёхиро Акияма и Хелен Шарман посещали станцию «Мир» в рамках частнофинансируемых негосударственных проектов

Но самым настоящим космическим туристом, заплатившим за недельный тур на орбиту из собственного кармана, стал американский мультимиллионер, менеджер инвестиционной фирмы Wilshire Associates Деннис Тито (Dennis Anthony Tito): он выложил $20 млн и весной 2001 года слетал на Международную космическую станцию (МКС) ради собственного удовольствия.

После него в космосе побывали ещё шестеро туристов, причём один – Чарльз Симони (Charles Simonyi) – дважды. Во всех случаях «чартером до орбиты и обратно» служил «Союз», а отелем с замечательным видом на голубую Землю, бархатно-чёрный космос и серебряные точки звёзд – МКС.


Первым настоящим космическим туристом стал Деннис Тито

Увы, стоимость «путёвки» быстро и непрерывно росла, вскоре перешагнув отметку в $35 млн, транспортный корабль оказался очень тесным, а космическая лаборатория – не слишком комфортабельной (не говоря о том, что высокопоставленные представители американского, европейского и японского космических агентств, эксплуатирующие МКС на паритетных с Роскосмосом началах, косо смотрели на «нежданных посетителей»). Понятно, что при таких условиях ни о каком массовом космическом туризме речи не шло.

Между тем число желающих увидеть планету со стороны не уменьшалось – разнообразные любители острых ощущений и поклонники экстремальных видов спорта, звёзды шоу-бизнеса, жаждущие воистину небесной славы, так же как и учёные, которых интересуют эксперименты в области микрогравитации, были не прочь пощекотать нервы перегрузками, почувствовать невесомость и насладиться фантастическим видом за иллюминатором.

Иными словами, потребность в космических полётах за собственные (или привлечённые) средства была, но при мизерном платёжеспособном спросе и весьма ограниченных возможностях по «перелёту, трансферу и проживанию». Понятно, что на этой основе невозможно строить и развивать масштабный высокодоходный бизнес. Для резкого расширения клиентской базы надо было всё менять.


Космический туризм можно строить при наличии платёжеспособного спроса и достаточных «транспортно-инфраструктурных» возможностей

Поскольку к началу 2000-х никаких иных способов добраться до орбиты, кроме полётов на одноразовом «Союзе» и многоразовом шаттле, не было (а последний совершенно точно собирался в ближайшем будущем сойти со сцены), «умные люди» решили… сделать космос доступнее и ближе, причём в прямом смысле этого слова.

Они рассуждали логично: так ли важно побывать на орбите, чтобы считаться астронавтом (ну хорошо, пусть не астронавтом, а «участником космического полёта»)? Может, достаточно лишь приоткрыть дверцу и чуть-чуть высунуть нос в этот самый космос? Ведь что такое, в сущности, «космический полёт»? Кто и где отметил его начало и конец? Перефразируя русскую «Википедию», можно сказать, что «космический полёт – это путешествие или транспортировка в или через космос. Чёткая граница между Землёй и космосом отсутствует, и Международная авиационная федерация FAI (Fédération Aéronautique Internationale) приняла за неё высоту в 100 км от поверхности Земли. Чтобы на такой высоте аппарат летел и не падал, он должен набрать первую космическую скорость...»

Конечно, такое определение хромает. Вообразим себе идеальный случай – ракету с бесконечным запасом топлива. Её двигатель способен бороться с земным тяготением так, чтобы аппарат имел постоянную скорость (например, 100 км/ч). Поднимаясь с земной поверхности вертикально, ракета сможет достичь окрестностей Луны (правда, такое путешествие продлится более 160 суток) и улететь дальше, в глубины пространства. Но будет ли такой полёт космическим? С точки зрения предлагаемого определения – скорее всего, нет: первая космическая скорость не достигнута... но граница космоса явно преодолена!

Чтобы не дразнить гусей (и особо щепетильных буквоедов), было определено, что подъём за границу космоса считается суборбитальным полётом, а обращение вокруг Земли с первой космической скоростью и выше – орбитальным.


Если ракета поднимается в космос, но не выходит на орбиту, то её траектория называется суборбитальной, крутой или пологой (как на схеме)

Здесь уместно пояснить смысл «магического числа» 100 км. Как и в случае с космическим полётом, определить границу космоса сложно. Где объективный критерий? По мнению одних, «мировое пространство» начинается уже с поверхности земного шара, другие говорят, что за Луной. Ближе всех те, что считает порогом космоса верхний предел атмосферы (хотя и это – условность: молекулы и ионы газов, образующих воздух, можно найти в тысячах километров над головой). Астрономы из США и Канады измерили границу влияния атмосферных ветров и начала воздействия космических частиц – она оказалась на высоте 118 км. NASA считает границей космоса 122 км: на этой высоте шаттлы переключались с реактивной системы управления на аэродинамические органы. Как уже указывалось выше, FAI приняло за порог 100 км. Линия получила название по имени Теодора фон Кармана (Theodore von Kármán) – этот американский учёный первым определил, где атмосфера становится настолько разрежённой, что аэродинамический полёт невозможен (точнее говоря, скорость аппарата, необходимая для создания достаточной подъёмной силы, превышает первую космическую) и для достижения больших высот авиационных средств недостаточно.

Итак, чтобы пробить границу космоса, нет нужды развивать первую космическую скорость (7900 м/с на поверхности Земли, выше – меньше) – достаточно разогнаться по вертикали примерно до 1000 м/с. Это сильно упрощает техническую сторону решения проблемы, чудесным образом сказываясь на цене вопроса! Суборбитальный аппарат по сравнению с орбитальным требует гораздо меньших энергетических затрат. Смущает приставка «суб» – от неё за версту несёт вторичностью, побочностью, недосказанностью и подчинённостью (субподрядчик, субаренда, субпродукты, субконтинент, субклеточный, субъядерный). Можно утешиться – «суб» говорит также о нахождения поблизости от чего-то (субстратосфера, субальпийский, субарктический и даже субсветовой).


Достичь границы космоса можно и на скорости около 1000 м/c

Преодолев высоту 100 км и идиосинкразию к слову «суборбитальный», путешественник испытает всё, о чем мечтал: тут тебе и перегрузки при разгоне (не тяжёлые, так, чуть больше, чем в самолёте), и невесомость после выключения двигателя (правда, кратковременная, но это опять-таки неплохо – не успеет надоесть и привести к отрицательным побочным эффектам), и Земля как огромная перевёрнутая чаша перед глазами.

Прикинув все за и против, идеологи этого подвида космического туризма (его иногда называют «суборбитальным» или даже «субтуризмом» – но последнее скорее жаргон), принялись повышать его привлекательность в глазах платёжеспособной публики, расписывая достоинства вылазок на границу пространства, выполняемых за «смешные деньги».


В суборбитальном полёте путешественник испытает перегрузки, невесомость и увидит выпуклую Землю через иллюминатор

Одной из подобных акций стал конкурс, объявленный 18 мая 1996 года основателем инициативной финансовой группы «Фонд Икс-приз» (X Prize Foundation) Питером Диамандисом (Peter Diamandis) для поощрения частной инициативы в области суборбитального туризма. Приз в размере $10 млн был обещан той организации, которая сможет до 31 декабря 2004 года без финансового участия правительственных структур создать аппарат, способный в течение двух недель дважды подняться на высоту более 100 км, имея на борту одного пилота и двух пассажиров (или эквивалентный этому вес).


Питер Диамандис

5 мая 2004 года, в 43-ю годовщину суборбитального полёта первого американского астронавта Алана Шепарда, владельцы инвестиционной компании Prodea Systems – Ануше Ансари (в будущем – четвёртая космическая туристка: осенью 2006 года совершила полёт на МКС), её муж Хамид и его брат Амир – пожертвовали более $1 млн в фонд X-Prize, стали его основными спонсорами – и конкурс стал называться Ansari X-Prize в честь их семейства.

Идея понравилась разнообразным самодельщикам, и к декабрю 2003 года в конкурсе участвовали 27 компаний из семи стран мира (большинство – американские, но были также представители из Канады, Израиля, Аргентины, России, Великобритании и других стран). Обманчивая лёгкость требований привела к тому, что уровень значительной части проектов оказался либо примитивным, либо явно нереализуемым. К первым можно отнести твердотопливную ракету британской фирмы Starchaser Industries – по сути, развитие ракетомодельных концепций. Ко вторым – румынский проект Orizont: многоразовый воздушно-космический самолёт, да ещё и с изменяемой геометрией крыла, был не по силам любительской команде ARCA.


Один из претендентов на X-Prize – ракета фирмы Starchaser Industries

В январе 1997 года к конкурсу присоединился участник, который по уровню мастерства обошёл остальных. Проект «Первый уровень» (Tier One), заложенный за семь месяцев до этого, представила калифорнийская компания Scaled Composites LLC, поддержанная деньгами миллиардера Пола Аллена (Paul Allen), одного из основателей Microsoft. Она опиралась на нетрадиционные решения и собиралась воспользоваться преимуществами не только ракетных, но и авиационных систем.

Глава Scaled – авиаконструктор и предприниматель Бёрт Рутан (Elbert Leander «Burt» Rutan) – с начала 1970-х годов получил известность благодаря созданию самолётов оригинальных схем. Летательные аппараты, большинство из которых строились из композиционных материалов, пользовались популярностью в сфере малой и частной авиации и завоевали свыше двух десятков различных наград на престижных конкурсах. Среди них встречались рекордные: всемирно известный Voyager совершил в 1986 году первый перелёт вокруг земного шара без посадок и дозаправок, а Proteus установил в 2000 году три мировых рекорда высоты и грузоподъёмности.


Авиаконструктор Бёрт Рутан получил известность благодаря своим самолётам оригинальных схем

Профессионализм Рутана не вызывал сомнений. Не случайно наблюдатели подчёркивали: «Когда на сцене появилась Scaled Composites c проектом Tier One, большинству экспертов стало ясно, в чьих руках окажется X-Prize». Если остальные участники конкурса сооружали нечто странное «на коленке», то компания из Мохаве взялась за дело с размахом: понимая, что новый фронтир так просто не покорится, разработали систему, изготовили её части и начали последовательную программу лётных испытаний. Несмотря на поддержку Аллена, Рутан постоянно оглядывался на финансовую сторону вопроса (денег много не бывает), что наложило отпечаток на детали проекта.

В самом деле, авиаконструктор к тому времени четверть века не только поставлял любителям «китовые» наборы для сборки самодельных самолётов, но и разрабатывал авиакосмическую технику по заказу правительственных организаций. Например, принимал непосредственное участие в проектировании первой ракеты-носителя воздушного пуска Pegasus фирмы Orbital Sciences (первый пуск – 5 апреля 1990 года). Таким образом он получил доступ к новейшим технологиям и базам данных, включая результаты продувок на сверх- и гиперзвуковых скоростях. Схема старта ракеты с самолёта-носителя (сначала бомбардировщика B-52, а затем – доработанного авиалайнера L-1011) была повторена в проекте Tier One, включающем два компонента – самолёт-носитель WhiteKnight (постфактум стал называться WhiteKnightOne) и ракетоплан SpaceShipOne.


Проект Tier One включал два компонента – самолёт-носитель WhiteKnightOne и ракетоплан SpaceShipOne

Вся система напоминала воплощённый шедевр ретрофутуризма, сошедший с фантастической иллюстрации художника Чесли Боунстелла (Chesley Bonestell). Конструкция почти полностью изготавливалась из углерод-углеродного композита.

Дозвуковой самолёт-носитель имел оригинальный внешний вид и строился по двухбалочной схеме с неубирающимся шасси. Взлёт обеспечивали два турбореактивных двигателя, снятые со списанных учебно-тренировочных Т-5, а также крыло большого – почти 25 м – размаха. Ракетоплан подвешивался на пилоне под фюзеляжем, приподнятым за счёт обратного V-центроплана.

Сверхзвуковой SpaceShipOne представлял собой небольшой летательный аппарат с веретенообразным фюзеляжем и коротким широким крылом, оканчивающимся хвостовыми балками, на концах которых стояли горизонтальные и вертикальные стабилизаторы.

Сценарий взятия Ansari X-Prize выглядел следующим образом: WhiteKnightOne с подвешенным под ним ракетопланом стартовал горизонтально с взлётно-посадочной полосы (ВПП) как обычный самолёт и начинал набор высоты примерно 15 км, где производится сброс.


Схема полёта ракетоплана SpaceShipOne

Здесь пилот переводил SpaceShipOne в горизонтальное планирование, слегка задирал нос и включал силовую установку. Для разгона и набора высоты разработчики применили гибридный ракетный двигатель, имеющий цилиндрическую камеру сгорания с шашкой твёрдого горючего (полибутадиеновый каучук), соединённую со сферическим баком окислителя (жидкая закись азота – «веселящий газ», который медики применяют для стоматологического наркоза) через единственный управляющий клапан. Жидкий компонент подавался в камеру под давлением собственных паров.

Для простоты следовало бы установить на ракетоплане пороховик, но Рутан «рассудил трезво»: если при разгоне на сверхзвуковой скорости аппарат начнёт терять управление, следует быстро выключить двигатель, иначе – хана (как увидим далее, он был прав). Значит, нужен мотор, который можно не только включить, но и надёжно (лучше – мгновенно) выключить. Разработка жидкостного двигателя с удовлетворяющими остальным требованиям характеристиками казалась слишком сложным делом, готовые изделия на полках магазинов не лежали. Выбор пал на гибридник (при объяснении «на пальцах» его устройство смотрелось проще и понятнее, чем сложный механизм жидкостного двигателя), который заказали на стороне, у частной фирмы SpaceDev (Паувэй, штат Калифорния).


Схема размещения гибридной двигательной установки и органов управления ракетоплана SpaceShipOne

Итак, за время горения топлива в двигателе ракетоплан разгонялся до скорости, соответствующей числу М=3,5, и поднимался на высоту 50 км (интересно, что здесь из-за малой плотности воздуха индикаторная скорость не превышала 440 км/ч). После выключения мотора аппарат продолжал полёт по инерции и, пройдя апогей, начинал свободное падение, заканчивающееся планированием и горизонтальной посадкой.

Интересной особенностью проекта была идентичность кабин экипажа, бортового радиоэлектронного оборудования, электроагрегатов управления, пневматики, сервомеханизмов и ряда других систем самолёта-носителя и ракетоплана: с самого начала лётные испытания WhiteKnightOne служили и для проверки в полёте работоспособности SpaceShipOne (за исключением ракетного двигателя). Высокая тяговооружённость самолёта-носителя и огромные воздушные тормоза позволяли лётчикам реалистично имитировать манёвры ракетоплана на разгоне, при входе в атмосферу и посадке. Кроме того, WhiteKnightOne служил тренажёром, на котором готовились пилоты SpaceShipOne.


Передние части фюзеляжей с кабиной самолёта-носителя и ракетоплана были подобны

Разработка концепции, продолжавшаяся четыре года, включала расчёты с использованием методов вычислительной газодинамики, испытания теплозащиты и теплостойких окон на примитивных стендах, а также сбросы моделей. Рутан стремился уйти от сложной системы управления, которая необходима крылатым аппаратам типа Space Shuttle, чтобы пережить вход в атмосферу (по его мнению, цена ошибки пилота или автомата на этом напряжённом этапе полёта слишком велика и «в идеале лучше вообще не рулить»).

Поскольку и самолёт-носитель, и ракетоплан имели относительно несложное ручное управление, авиаконструктор искал конфигурацию, устойчивую к балансировке на больших углах атаки (вход в атмосферу со сверхзвуковой скоростью) и дающую высокую подъёмную силу при горизонтальном полёте на дозвуковых скоростях и планирующей посадке. Решением стало изменение геометрии SpaceShipOne при входе в атмосферу (манёвр, получивший поначалу название shuttlecock, а затем feather) – отклонение вверх хвостовых балок со стабилизаторами, расположенных на концах крыла; аэродинамические и тепловые нагрузки приходятся на нижнюю часть фюзеляжа и крыла, стоящих против потока, а устойчивость и управляемость обеспечивают хвостовые кили с рулями, стоящие по потоку.


Ракетоплан в момент интенсивного торможения – хвостовые балки отклонены

Итак, после выключения гибридного двигателя и разворота хвостовых балок в положение входа в атмосферу у экипажа и пассажиров SpaceShipOne было примерно 3,5 минуты для того, чтобы «насладиться невесомостью и видами Земли из космоса». Затем пилот ориентировал аппарат для спуска (хотя конфигурация позволяет обойтись «без посторонней помощи»). Пиковые перегрузки при запуске не превышали 3–4, при спуске – 5 единиц (4 – в течение примерно 20 секунд). После того как нагрузки снижались и скорость со сверхзвуковой переходила на дозвуковую, на высоте 24 км балки возвращались в нормальное положение, пилот снова брал управление на себя и сажал аппарат, как обычный планер, на ВПП при скорости около 200 км/ч.

В атмосфере управление обеспечивалось аэродинамическими рулями, а на больших высотах – реактивными соплами на сжатом газе.

Лётные испытания самолёта-носителя начались 1 августа 2002 года. В 24-м по счёту полёте, 20 мая 2003 года, под фюзеляжем WhiteKnightOne впервые был подвешен ракетоплан (ещё не вполне готовый). Уже в третьей такой миссии SpaceShipOne, управляемый шеф-пилотом Scaled Composites Майклом Мелвиллом (Michael Melville), был сброшен с высоты 14300 м и успешно спланировал на взлетно-посадочную полосу аэропорта Мохаве.


Самолёт-носитель WhiteKnight с подвешенным ракетопланом SpaceShipOne набирает высоту

Впервые ракетный двигатель был включён 17 декабря 2003 года, в восьмом «свободном» полёте ракетоплана, – лётчик-испытатель Брайан Бинни (Brian Binnie) нажал кнопку «зажигание» на высоте 13500 м при скорости, соответствующей М=0,55. За 15 секунд SpaceShipOne разогнался до скорости, соответствующей числу М=1,2 (стал первым пилотируемым частным аппаратом, преодолевшим звуковой барьер) и достиг в апогее высоты 20700 м.

Чтобы избежать проблем (как известно, бюрократия самой свободной страны мира чрезвычайно изощрена), компания Scaled Composites 1 апреля 2004 года получила от Федерального управления гражданской авиации FAA (Federal Aviation Administration) годичную лицензию на проведение суборбитальных полётов. Через неделю, 8 апреля, во время 13-го сброса пилот Питер Сиболд (Peter Siebold) второй раз запустил «гибридник» – двигатель проработал 40 секунд и обеспечил разгон ракетоплана до скорости, соответствующей М=1,6, и подъём до апогея в 32000 м.

13 мая SpaceShipOne под управлением Майкла Мелвилла при третьем включении двигателя преодолел высоту 64 км.



SpaceShipOne сброшен с самолёта-носителя и сейчас включит ракетный двигатель

21 июня при четвёртом включении двигателя ракетоплан, который вновь пилотировал Майкл Мелвилл, выполнил первый суборбитальный прыжок, достигнув высоты 100124 м! Планировалось прыгнуть выше, но помешали проблемы с вращением аппарата, возникшие по вине лётчика…

29 сентября Майк Мелвилл совершил первый зачётный полёт в рамках Ansari X-Prize на высоту 102,93 км. А 4 октября (в годовщину запуска первого спутника) конкурс был выигран вчистую: пилот Брайан Бинни поднялся на высоту более 112 км и благополучно опустился на Землю. В этом полёте SpaceShipOne побил рекорд высоты для пилотируемых самолётов (107,96 км), установленный 22 августа 1963 года Джозефом Уокером (Joseph A. Walker) на экспериментальном ракетоплане Х-15, принадлежащем NASA…


4 октября 2004 года Брайан Бинни выполнил второй зачётный полёт на SpaceShipOne

Продолжение следует...
 
Последнее редактирование:

tomcat

far away...
Команда форума
Мульти модератор
Туда, где небо становится фиолетово-чёрным. Часть 2
Туда, где небо становится фиолетово-чёрным. Часть 2 — Брэнсон и космопорты
923175.jpg

11 ноября 2015 Игорь Афанасьев , Дмитрий Воронцов
Первая часть статьи закончилась установлением нового мирового рекорда высоты. Основная роль в создании рекордного аппарата, несомненно, принадлежала Бёрту Рутану и Полу Аллену. Однако к делу завоевания Ansari X-Prize приложил руку (а точнее — деньги) и кое-кто третий…


Полёты SpaceShipOne наблюдали огромные толпы народа, собравшегося на аэродроме Мохаве, который получил статус «космопорта» (Mojave Spaceport). 13 октября 2004 года планировалось выполнить четвёртый суборбитальный прыжок (разработчики уверяли, что SpaceShipOne способен подняться чуть ли не до 140 км), но руководитель Scaled Composites решил не подвергать риску исторический аппарат и отменил остальные рейсы.




Толпа наблюдает рекордный полёт SpaceShipOne 4 октября 2004 года

Вскоре после выполнения второго зачётного полёта авиаконструктор сделал официальное заявление: «Моя цель куда грандиознее [чем рекорды]. Мне совершенно необходимо разработать пилотируемую систему для космического туризма, которая по меньшей мере в 100 раз безопаснее всего, на чём человек когда-либо летал в космос. Я должен это сделать!»

Многочисленные зрители, наблюдавшие полёты Мелвилла и Бинни, заметили новую «ливрею» SpaceShipOne и надпись Virgin на его борту. Среди VIP-персон вместе с Алленом и Рутаном победителям махал рукой Ричард Брэнсон (Richard Charles Nicholas Branson) – англичанин, «эксцентричный миллионер», глава группы компаний Virgin, в которую входит более 200 компаний в 29 странах мира. В детстве он не отличался какими-то выдающимися способностями, более того – страдал дислексией и очень плохо учился: до восьми лет не умел читать и писать и совершенно не понимал точных наук (некоторые источники сообщают, что Брэнсон ушёл из школы в 15 лет, однако его автобиография эти данные опровергает).


Ричард Брэнсон, Бёрт Рутан и Пол Аллен встречают SpaceShipOne

Представители СМИ выяснили, что на самом последнем этапе гонки за Ansari X-Prize его компания Virgin Galactic выступила спонсором двух зачётных полётов SpaceShipOne. Будучи неординарной личностью, Брэнсон вдохновился результатами работы команды Рутана — Аллена. «В юности я видел, как человек высадился на Луне, и мечтал однажды полететь в космос, – сообщил он. – Сначала хотел стать космическим туристом, но полагал, что для меня это слишком дорого. К счастью, мне встретился удивительный инженер Бёрт Рутан. Он рассказал мне о SpaceShipOne – к тому времени аппарат совершил уже десять тестовых полётов и доказал, что технология работает… Благодаря ему я надеюсь, что очень скоро путешествия в космос станут реальностью».

Много позже, в октябре 2015 года, Бёрт Рутан рассказывал: «Ричард Брэнсон зарегистрировал название Virgin Galactic ещё до того, как познакомился со мной. Его мечтой было учредить нечто большее, чем уже имеющиеся авиационные компании и разнообразные фирмы, входящие в его империю. Он хотел устраивать рейсы в космос и предложил Аллену несколько миллионов за то, чтобы нанести надпись Virgin на SpaceShipOne во время первого полёта, но Пол отказался… Позже Брэнсон всё-таки получил этот брендинг, пришёл ко мне и сказал: «Вы, наверное, единственный человек, который может сделать то, что мне нужно, достаточно быстро». Я предложил три разных бизнес-плана по рынку таких суборбитальных пилотируемых полётов в расчёте на три типа клиентов».

На официальной церемонии, проходившей 6 ноября 2004 года в университете Сент-Луиса (штат Миссури) основатель и председатель «фонда Икс-приз» Питер Диамандис вручил чек на $10 млн победителю конкурса Ansari X-Prize – команде Scaled Composites во главе с Бёртом Рутаном. В церемонии награждения приняли участие миллиардер Пол Аллен, Брайан Бинни и Майк Мелвилл, пилотировавшие корабль в рамках конкурсных полётов, а также представитель Ричарда Брэнсона, который заключил со Scaled Composites договор о строительстве целой флотилии суборбитальных туристических кораблей. Одновременно стало известно, что 27 сентября было подписано соглашение, в соответствии с которым группа Аллена — Рутана продала Брэнсону лицензию на изготовление пилотируемых суборбитальных кораблей. Сумма сделки составила $21,5 млн. Эксплуатировать флот из нескольких кораблей Virgin SpaceShip (VSS) или SpaceShipTwo (разработкой которых займётся Scaled Composites) и должна была компания Virgin Galactic.


Амир Ансари (на заднем фоне левого снимка), Питер Диамандис, Пол Аллен, Бёрт Рутан, Брайан Бинни и Ричард Брэнсон празднуют победу

«Восемь лет назад мы стояли здесь и говорили о том, что однажды кто-то сделает то, что прежде не удавалось никому, – отметил накануне торжественной церемонии президент Научного центра Сент-Луиса Дуг Кинг (Doug King), имея в виду частные суборбитальные полёты. – И вот мечта X-Prize осуществилась».

Наблюдатели отмечали, что важными моментами «первой негосударственной программы пилотируемых космических полётов» SpaceShipOne стали короткий период разработки (3,5 года), малый рабочий коллектив (39 человек) и… относительно большие затраты – $22 млн, которые более чем вдвое превзошли призовую премию.


Материальная часть «первой негосударственной программы пилотируемых космических полётов» включала (слева направо) передвижную цистерну для жидкого окислителя, мобильный стенд для испытания гибридного двигателя, самолёт-носитель WhiteKnight, ракетоплан SpaceShipOne и трейлер с оперативным центром управления и связи

Ключевым аспектом конкурса Ansari X-Prize было стимулирование космического туризма. Исследования, выполненные консалтинговой и аналитической корпорацией Futron, гласили: этот сектор рынка очень многообещающий, причём число желающих совершить суборбитальный полёт в период с 2009 по 2021 год может вырасти с 1000 до 13000–15000 пассажиров в год. По мнению аналитиков, к 2020 году по всему миру могли бы летать 60 суборбитальных аппаратов, выполняя по 50 рейсов ежегодно, поднимая «к границам пространства» в среднем по пять пассажиров и принося годовые доходы на общую сумму около $700 млн. Орбитальный туризм при более медленном росте, чем в суборбитальном секторе, будет получать до 60 пассажиров и $300 млн годовой прибыли. Людей, заинтересованных в суборбитальных прыжках, будет существенно больше, и по социальному статусу они отличаются от группы, проявляющей интерес к орбитальному туризму.


Суборбитальный туризм мог стать одним из видов экстремального отдыха

Кроме «воздушно-космической» составляющей, индустрия космического туризма предполагала создание необходимой наземной инфраструктуры – сети мест старта и посадки (их тут же громко назвали «космопортами») с разнообразными заведениями для досуга и отдыха, а также центров предварительной подготовки к суборбитальным полётам. В последнем случае предполагалось, что при наличии «среднего» (по медицинским показателям) здоровья можно будет ограничиться короткой ознакомительной программой и тестами на готовность туриста к переходу в разряд «гражданских астронавтов». Окрылённый радужными перспективами, Ричард Брэнсон провёл переговоры с «заинтересованными лицами»

«Если ты построишь мне космический корабль, я построю тебе космопорт», – сказал ему избранный в 2003 году губернатором штата Нью-Мексико Билл Ричардсон (William Blaine "Bill" Richardson III). «Думаю, если вы построите мне космодром, то я построю вам корабль», – ответил глава группы компаний Virgin. Идея вдохновляла обоих – занимаясь строительством космопорта недалеко от знаменитого ракетного полигона Уайт Сэндз (White Sands), штат организует новые рабочие места, привлекает ассигнования и в будущем становится Меккой космического туризма, а Virgin Galactic получает статус якорного арендатора и место для демонстрации своих возможностей перед финансовыми воротилами всего мира. Бизнесмен пообещал, что его компания обоснуется в штате и быстро наладит регулярные суборбитальные полёты для состоятельных туристов, привлекая и обычных людей, которые съезжаются со всей страны взглянуть на новомодную диковинку. Губернатор сделал «Космопорт Америка» (Spaceport America) своим личным проектом.


Астронавт Базз Олдрин, губернатор Билл Ричардсон и бизнесмен Ричард Брэнсон на фоне строящегося «Космопорта Америка»

Казалось бы, Scaled Composites уже имеет готовый коммерческий суборбитальный ракетоплан. Однако энтузиастов ждало небольшое разочарование: 25 июля 2005 года связка WhiteKnight – SpaceShipOne выставлялась на авиашоу легкомоторной авиации в Ошкоше, штат Висконсин, а после совершила турне на авиабазу ВВС Райт-Паттерсон в Дейтоне, штат Огайо. Затем самолёт-носитель доставил ракетоплан в Национальный музей авиации и космонавтики Смитсоновского института в Вашингтоне. 5 октября 2005 года публика увидела SpaceShipOne в галерее «Вехи полёта» (Milestones of Flight) рядом с самолётами Spirit of St. Louis, X-1 и командным модулем корабля Apollo 11.

С одной стороны, как говорилось выше, Рутан не хотел рисковать и объявил, что, побив рекорд, аппарат отправится в музей. Ключевое слово здесь «рекорд»: увы, ракетоплан, как и многие другие рекордные и экспериментальные самолёты Scaled Composites, обладал не слишком высоким ресурсом. Поэтому коммерческую фазу проекта Virgin Galactic отложили на потом: предполагалось спроектировать настоящий «космолайнер», рассчитанный на долгую и частую коммерческую эксплуатацию.


Ричард Брэнсон позирует на фоне аппаратов Spirit of St. Louis, SpaceShipOne и X-1 в галерее «Вехи полёта»

«Брэнсон хотел сразу начать этим заниматься, но ещё полтора года потребовалось для того, чтобы все решили, как будет выглядеть этот SpaceShipTwo и сколько людей повезёт», – вспоминает Рутан.

В августе 2005 года Virgin Galactic изложила планы компании. В них SpaceShipOne и WhiteKnightOne по традиции обозначались как Tier One («Уровень 1»). Интересно, что под «Уровнем 2» подразумевался орбитальный многоразовый аппарат SpaceShipThree, а прорабатываемый на данном этапе суборбитальный SpaceShipTwo обозначался как «Уровень 1В». Брэнсон думал купить у Scaled Composites пять суборбитальных ракетопланов второго поколения и два новых самолёта-носителя WhiteKnightTwo. Общая сумма контракта составила более $200 млн.

Проектирование, изготовление и лётные испытания возлагались на The Spaceship Company (TSC) – совместное предприятие, в котором 70 % акций принадлежало Virgin Group, а 30 % – Scaled Composites LLC (позднее единоличным собственником стала Virgin Galactic).


Первоначальный вариант плана «Уровень 1В» — аппараты для суборбитального туризма напоминают увеличенные в размерах рекордные прототипы

Предполагалось, что схема полёта системы останется прежней, только высота разделения увеличится до 18,2 км, а общая продолжительность «тура» составит 5 часов. SpaceShipTwo заимствует технологии, отработанные на SpaceShipOne (более того, изначально всю систему даже изображали на плакатах как масштабно увеличенный вариант рекордиста), но вместит шестерых пассажиров (по три кресла на каждом борту) и двух пилотов (в отдельной кабине). Как и у прототипа, у него отклоняемые хвостовые балки и гибридный ракетный двигатель, но нет главного «порока» предшественника – недостаточной устойчивости, особенно по каналу крена. Уровень комфорта значительно выше: в кабине сечением 1,9–2,2 м можно стоять в полный рост, в бортах и потолке – множество иллюминаторов, шаг кресел большой, сами они откидываются для облегчения восприятия перегрузок (доходят до шести единиц) и снабжены отстегиваемыми поперечными перекладинами. Пассажиры смогут быстро покинуть свои места и свободно плавать по кабине в невесомости, продолжающейся до шести минут: аппарат способен залетать на высоту 135–140 км.

Первоначально Брэнсон хотел вложить примерно $ 100 млн собственных средств в разработку нового поколения кораблей и наземной инфраструктуры. С начала коммерческой эксплуатации системы за пять лет планировалось «отправить в космос» примерно три тысячи астронавтов; рассчитывали, что цена билета в «космический клуб» составит $ 190 тыс.

Уже в начале ноября 2005 года Virgin Galactic сообщила, что собрала для проекта первые $10 млн: деньги депонировали люди, которые хотели бы совершить полёт к границам земной атмосферы. Руководство компании рассказывало о десятках тысяч заявок, поданных гражданами более чем 100 стран («34 тысячи человек через Интернет попросили зарезервировать для них место на борту коммерческого ракетоплана»). На момент начала продажи билетов объявленная стоимость «тура в космос» составляла $200 тысяч с человека. Однако президент компании Virgin Galactic Уильям Уайтхорн (Will Whitehorn) с оптимизмом заявлял, что уже к пятому году эксплуатации системы цена может понизиться примерно до $50 тысяч, а к восьмому-девятому — упадёт до $25 тысяч за счет увеличения частоты полётов и роста экономии от относительного снижения эксплуатационных расходов. В более отдалённом будущем путешествие к границе космоса должно было обойтись всего в $15 тыс.


Владелец Virgin Galactic Ричард Брэнсон и президент компании Уильям Уайтхорн полны оптимизма

По плану, в начале 2008 года в калифорнийской пустыне Мохаве должна была развернуться программа лётных испытаний, насчитывающая около 100 миссий, которые выполнялись для подтверждения безопасности системы, предназначенной не для установления рекорда, а для массового вывоза в космос «мирного населения». Первые коммерческие полёты, намеченные на конец 2009 года, планировалось начать из «Космопорта Америка» в штате Нью-Мексико.

Полноразмерный макет SpaceShipTwo показали публике 28 сентября 2006 года. Концепция системы в целом повторяла описанную выше, однако с существенными отличиями в схеме полёта и его параметрах, а также в технических деталях летательных аппаратов. Интерьер салона спроектировал всемирно известный дизайнер Филипп Старк (Philippe Starck), оснастивший его огромными иллюминаторами для того, чтобы туристы могли насладиться видами Земли. На ракетоплане планировалось установить новый, гораздо более мощный гибридный ракетный двигатель.


Дизайнер Филипп Старк оснастил пассажирскую кабину оригинальными креслами и огромными иллюминаторами

Два года пролетели «в приятных хлопотах». Анонсированные полёты ещё не начались, но в январе 2008 года Virgin Galactic провела презентацию проекта, которая не обошлась без громких речей.

«2008-й будет годом космических кораблей. Мы все под большим впечатлением от новой системы и от её возможностей», – заявил Брэнсон, прошедший в начале декабря 2007 года курс подготовки в Национальном аэрокосмическом центре исследований и подготовки NASTAR (National Aerospace Training and Research Center, Саутхэмптон) в Филадельфии.


Ричард Брэнсон демонстрирует модель первого варианта ракетоплана SpaceShipTwo

Миллиардер развил бурную деятельность по продвижению проекта – разъезжал по всему миру, рассказывая о захватывающих перспективах. Были его представители и в России. На начало 2008 года количество клиентов Virgin Galactic превысило 200 человек (они внесли предоплату на общую сумму около $30 млн), а ещё примерно 85 тысяч высказали свой интерес к суборбитальным приключениям. Ещё бы: Бёрт Рутан сообщал, что в течение ближайших 12 лет его фирма планирует построить 40 (!) ракетопланов SpaceShipTwo и 15 (!) самолётов-носителей WhiteKnightTwo. Каждый «корабль» сможет летать дважды в день, а самолёт-носитель способен на четыре ежедневных полёта.

Морозным вечером 7 декабря 2009 года, когда сумерки опустились на пустыню Мохаве, пред изумлённые очи более чем восьми сотен гостей, присутствовавших на грандиозном шоу, выкатился «первый в мире коммерческий космический корабль SpaceShipTwo». Экстравагантный Ричард Брэнсон представил гостям руководство Virgin Galactic, команду разработчиков во главе с Бёртом Рутаном, будущих «коммерческих астронавтов» и официальных лиц, включая губернаторов штатов Калифорния и Нью-Мексико Арнольда Шварценеггера и Билла Ричардсона.

Двухфюзеляжный самолёт-носитель WhiteKnightTwo с подвешенным под среднепланом крыла шестиместным аппаратом SpaceShipTwo, футуристически подсвеченный ярко-синими прожекторами, плавно и величественно выехал на площадку перед ангаром под звуки трека Buzz, специально написанного известными британскими диджеями и включающего в себя запись разговора астронавтов при высадке Apollo 11 на Луну.


Первый показ самолёта-носителя WhiteKnightTwo с шестиместным ракетопланом SpaceShipTwo

По всем правилам, новоиспечённому «судну» полагалось дать громкое имя. Честь окрестить SpaceShipTwo выпала двум достойнейшим губернаторам и дочери сэра Ричарда Брэнсона, которые по традиции разбили бутылку шампанского о нос корабля и назвали его Enterprise. Действо завершилось коктейльной вечеринкой в первом и единственном «ледяном» баре, построенном в пустыне, под громогласные раскаты ритмов диджейских сетов.

Эксперты с восхищением подмечали новые детали системы. И если ракетоплан внешне по-прежнему напоминал космический корабль пришельцев (хотя уже в меньшей степени), то самолёт-носитель изменился кардинально. Бёрт Рутан уже подумывал уйти в отставку, и основную часть разработки выполняли его преемники Роберт Морган (Robert Morgan) и Джеймс Тай (James Tighe). Вместо первоначально предложенной двухмоторной, масштабно увеличенной и нелепо выглядящей «незамкнутой рамы» а-ля WhiteKnightOne, самолёт превратился в двухфюзеляжного обтекаемого четырёхмоторного красавца вполне нормального вида и впечатлял теперь только размерами и лётными данными. На момент постройки это был самый большой в мире цельнокомпозитный летательный аппарат. Разработчики уверяли, что он способен нести не только пилотируемый суборбитальный ракетоплан, но и небольшую ракету-носитель для запуска малых космических аппаратов. В самолёте-носителе WhiteKnightTwo были «каюты», которые можно использовать в личных целях: например, члены семей и друзья космических туристов моли наблюдать из них за стартом ракетоплана с борта самолёта-носителя.


Момент отделения ракетоплана SpaceShipTwo от самолёта-носителя WhiteKnightTwo

Специалисты узнали, что в период с 2005 по 2009 год Scaled Composites провела многочисленные испытания масштабных моделей гибридного ракетного двигателя для оценки конструкции. После определения особенностей проекта к разработке силовой установки подключилась фирма Sierra Nevada Corporation (SNC). Огневые стендовые испытания полноразмерных образцов «гибридника» начались в апреле 2009 года.


Сравнение туристического ракетоплана и его прототипа

На тот момент казалось, что обаяние и деловая хватка Ричарда Брэнсона вкупе с конструкторским гением Бёрта Рутана сдвинули горы! Вслед за внутриамериканским ипотечным кризисом 2007 года по миру покатился финансово-экономический кризис 2008 года. Он снизил основные экономические показатели в большинстве стран с развитой экономикой и перерос в глобальную рецессию. Но, глядя на усилия Virgin Galactic, эксперты поднимали голову. Вот как примерно выглядела типичная «суборбитальная туристическая агитка» того времени: «Если вам скучно в мире акций и облигаций, вас тошнит от стагнирующего рынка, можно найти время исследовать мир новых инвестиций – в космические путешествия! Через несколько лет полёты за пределы Земли могут стать реальностью, а поскольку их прибыльность будет расти, то можно остановить «крысиные бега» и вступить в новую, гораздо более захватывающую гонку!»

Пример Virgin Galactic вдохновил авторов многочисленных предложений в области космического туризма, подобных тем, что возникали во времена конкурса X-Prize. Однако экспертов задевала странная тенденция, наметившаяся с самых первых разговоров о «доступных путешествиях в космос для простых людей» и отражаемая поговоркой «Труба пониже и дым пожиже». Возможности предлагавшихся систем явно не соответствовали декларируемым целям.


Индустрия суборбитального туризма с коммерческими «космопортами» и многочисленными разнообразными средствами доставки космических путешественников представлялась как новый сектор рынка

«Наша миссия заключается в том, чтобы приступить к коммерческой доставке людей на орбиту с начала 2014 года», – говорит Майкл Мол (Michiel Mol), один из основателей фирмы Space Expedition Curacao, предлагающей полёты на ракетоплане Lynx. Отличительной особенностью последнего была сравнительно простая схема (двухместный – пилот и пассажир – ракетный самолёт, взлетающий и садящийся на обычную ВПП) и малая высота полёта (60 км для начального и 102 км для «продвинутого» вариантов), которая окупалась небольшой ценой билета ($ 95 тыс). Интересно, какие ощущения должен был испытать за 1,5–2 минуты невесомости «турист», зажатый в тесной кабинке рядом с инструктором? И причём здесь «доставка людей на орбиту», если 60 км ну никак не тянули даже на «границу космоса»?

Space Expedition Curacao (она, кстати, до сих пор предлагает в Интернете «каникулы в космосе») работала в партнёрстве с крупными коммерческими авиакомпаниями, уверяя, что её голландский партнёр KLM «имеет такое же видение, как у нас: через 20–25 лет преемник нашего космического корабля сможет доставить пассажиров из Лондона в Сидней за два часа. Если всё пойдёт по плану, наше предприятие станет прибыльным уже в этом году». Не стало — ни в 2010-м, ни в 2015-м.


Двухместный ракетоплан Lynx для туристических полётов на высоту 60 км

Соучредитель другой инновационной компании космических путешествий – ZeroInfinity – Хосе Мариано ЛопесУрдиалес (Jose Mariano LopezUrdiales) тоже был уверен в успехе. Он предлагал использовать для доставки туристов к границе космоса «новые экологически чистые технологии»: с помощью… гелиевого аэростата, в гондоле которого могут поместиться четыре пассажира! Высота подъёма даже самых крупных стратостатов ограничена примерно 50 км, зато на разработку такой экзотики требовалось «всего-навсего» 20 млн евро ($26 млн) инвестиций...


Схема «путешествия в космос» на стратостате

Все эти «суборбитальщики» на полном серьёзе предполагали возить людей, получая прибыли, утверждая, что «никто не застрахован от здоровой конкуренции, даже Virgin, и это будет только на руку будущим коммерческим астронавтам...»

Видя, что грядут тяжёлые времена (кризис всё-таки..), и понимая, что для реализации грандиозных планов авансов клиентов не хватит, Ричард Брэнсон занялся поисками инвесторов. И такие нашлись. В частности, в 2009 году Virgin Galactic получила финансирование в объёме $280 млн от ближневосточной компании Aabar Investments, владельцем которой является правительство Абу-Даби, в обмен на долю в 32 % бизнеса.


Ричард Брэнсон и Мохаммед Бадами Аль-Хуссейни, СЕР компании Aabar Investments

Параллельно по всему миру разворачивалось создание космопортов, под которые предполагалось приспособить старые военные базы и заброшенные заводы. Первые коммерческие рейсы планировалось осуществлять из «Космопорта Америка», но рассматривались и другие варианты. Virgin Galactic вела переговоры с правительством Швеции по поводу строительства в северной части страны, в Кируне, космопорта под названием Spaceport Kiruna. Также планировалась постройка аналогичных сооружений в Абу-Даби.

Складывалось интересное положение: по сути, ещё не имея за собой ни лётного «железа», ни подтверждения надёжности разрабатываемой матчасти, Ричард Брэнсон фактически торговал воздухом, получая авансы от клиентов и инвестиции от бизнесменов. Между тем проект коммерческого космоплана явно буксовал, демонстрируя отсутствие прогресса.


Окончание следует.
 
Последнее редактирование:

tomcat

far away...
Команда форума
Мульти модератор
Туда, где небо становится фиолетово-чёрным. Часть 3

Туда, где небо становится фиолетово-чёрным. Часть 3 — Virgin Galactic и проблемы. Заключение

923604.jpg

18 ноября 2015 Игорь Афанасьев , Дмитрий Воронцов
Вторая часть статьи повествовала о «быстром старте» коммерческой программы суборбитальных туристических полётов: Ричарду Брэнсону с партнёрами удалось развернуть широкую маркетинговую кампанию, наладить связь с инвесторами и привлечь заказчиков. Однако ввод транспортной системы в строй затягивался...


Если вы пропустили первую и вторую части, рекомендуем с ними ознакомиться. Ну а здесь мы расскажем, чем закончилась история с суборбитальным космическим туризмом.

В 2004 году на волне эйфории от победы в конкурсе Ansari X-Prize менеджеры Virgin Galactic назначили дату начала коммерческих полётов на 2007–2008 год. Но уже через пару лет перенесли даже первые суборбитальные прыжки на первый квартал 2009 года, говоря о предстоящей регулярной эксплуатации системы с 2010 года. Увы, и эти сроки выдержать не удалось. Проект столкнулся с целым букетом проблем, о которых разработчики предпочитали молчать.


Будущие пассажиры SpaceShipTwo, которые внесли депозит в оплату своего полёта. Фото Virgin Galactic

В частности, значительные трудности возникли с отработкой силовой установки. Как мы говорили в предыдущей части статьи, Рутан выбрал гибридный ракетный двигатель из-за ограниченности ресурсов, выделенных на проект Tier One. Опыт SpaceShipOne вроде бы подтвердил возможность быстрой разработки и доводки до лётного состояния мотора, который был объявлен «надёжным, безопасным и экологически чистым». Казалось, трудностей с проектированием и доводкой двигателя для SpaceShipTwo не будет, но...

Специалисты отмечали невысокую эффективность данного типа двигателя, нестабильность его характеристик и малую устойчивость работы. Дуглас Мессье (Douglas Messier) – автор тематического сайта о космическом туризме Parabolicarc.com – писал: «Рутан отказался от жидкостных систем, поскольку посчитал их слишком сложными и ненадёжными. Вместо этого он разработал двигатель, который использует закись азота и большой кусок резиноподобного горючего. SpaceShipOne был первым пилотируемым летательным аппаратом, на котором стоял гибридный двигатель. Он неплохо функционировал, но его работа была «грубой» из-за неравномерного горения резины. В одном из полётов пилот услышал громкий хлопок. Обернувшись назад, чтобы проверить, цел ли хвост аппарата, он увидел кусок резины, вылетевший из сопла».


Камера гибридного двигателя после работы: видны следы разрушения внутренней облицовки сопла продуктами неполного сгорания топлива. Фото D. Ramey Logan

Высказывалось даже мнение, что гибридные двигатели плохо масштабируются и результаты испытаний ракетоплана SpaceShipOne нельзя автоматически переносить на гораздо более крупное изделие. По словам экспертов, которые изучали видеозапись первых стендовых испытаний, «увеличенный в масштабе гибридный двигатель имел серьёзные проблемы с колебаниями и вибрациями, опасными для пилотов, пассажиров и самого SpaceShipTwo».

Первый тревожный звонок, возвестивший о проблемах с безопасностью проекта, прозвенел задолго до первых полётов: 26 июля 2007 года во время подготовки к наземным испытаниям гибридного двигателя неожиданно взорвался бак окислителя и погибло трое сотрудников Scaled Composites. Ещё трое получили серьёзные ранения, инфраструктура испытательного комплекса была частично разрушена. До этого закись азота («веселящий газ») считалась безопасным компонентом. Но оказалось, что при относительно высоких температурах (а в то время в США стояла жара до 40 °С) жидкость переходит в газ «неконтролируемо и слишком быстро».


Последствия взрыва закиси азота на стенде Scaled Composites при испытаниях. Фото Parabolicarc.com

При расследовании инцидента FAA выявила пять фактов предполагаемых нарушений со стороны разработчиков (два – серьёзных) и оштрафовала фирму Рутана на $25 870 за несоблюдение мер безопасности. Представители NASA считали, что катастрофа сдвинет сроки этапов программы как минимум на год, хотя сам Рутан выражал надежду, что она не повлияет на планы компании.

Тем не менее постройка первых лётных экземпляров самолёта-носителя и ракетоплана сильно отставала от графика. Они были готовы только в 2009 году, когда и получили собственные имена: SpaceShipTwo №1 окрестили VSS (Virgin Space Ship) Enterprise («Смелое предприятие» – в честь корабля из фантастического сериала «Звёздный путь»), а WhiteKnightTwo №1 – VMS (Virgin Mothership) Eve («Ева» – в честь матери Ричарда Брэнсона). Virgin Galactic объявила, что коммерческие полёты стартуют в конце 2011 – начале 2012 года.

22 марта 2010 года Enterprise впервые поднялся в воздух (правда, без отделения от самолёта-носителя): связка летательных аппаратов достигла высоты более 13 700 м, а общая продолжительность полёта составила 2 ч 54 мин.


Полёт системы VMS Eve – VSS Enterprise. Ракетоплан ещё не совсем готов – сопло двигателя заглушено. Фото Virgin Galactic

Начало серии лётных испытаний совпало с организационными пертурбациями в Virgin Galactic. В мае 2010 года главным исполнительным директором компании стал Джордж Уайтсайдс (George Whitesides), до этого работавший в «переходной» администрации NASA. Уже в начале 2011 года он получил и должность президента Virgin Galactic из-за отставки своего предшественника – Уилла Уайтхорна. Возможно, на смену руководства повлияли задержки программы, но, скорее всего, это было связано со сменой маркетинговой политики компании. «Несмотря на то, что [Virgin Galactic] входит в Virgin Group британца Ричарда Брэнсона, она использует технологии Scaled Composites и всегда была чисто американской компанией. И то, что теперь я «на борту», лишний раз подчёркивает, что Virgin Galactic всё-таки американская компания», – подтвердил это предположение сам Джордж Уайтсайдс в одном из интервью.

Лётные испытания выявили трудности пилотирования ракетоплана на планировании. Имея не самые высокие аэродинамические качества, аппарат снижался слишком быстро, предъявляя повышенные требования к квалификации и реакции пилотов. Так, 29 сентября 2012 года, когда в ходе 16-го безмоторного полёта на борту SpaceShipTwo впервые находились сразу три человека (два пилота и бортинженер), ракетоплан попал в нештатную ситуацию – вышел на закритические углы атаки со срывом потока на хвостовом оперении – и потерял управляемость (по словам наземных наблюдателей, «камнем пошёл вниз»). Экипаж сразу же перевёл аппарат на траекторию быстрого спуска, включив систему отклонения хвостовых балок, что позволило восстановить устойчивый полёт.


Новый президент Джордж Уайтсайдc: «То, что я «на борту», подчёркивает, что Virgin Galactic – американская компания». Фото Max S. Gerber

Картину портили и трудности с «гибридником»: до декабря 2012 года прошли 15 огневых стендовых испытаний, интерпретированные разработчиками как успешные. Но в мае 2014 года неожиданно для всех Virgin Galactic отозвала проект двигателя у Sierra Nevada и продолжила разработку самостоятельно, объявив при этом об изменении состава твёрдого горючего: вместо полибутадиенового каучука камеру предполагалось снаряжать шашкой термопластичного полиамида. Как выяснилось, прежний заряд вызывал серьёзные проблемы с устойчивостью горения примерно через 20 секунд после зажигания. Кроме того, упоминалось, что новый двигатель «будет иметь более высокие характеристики» и, по прогнозам, сможет поднимать SpaceShipTwo на большую высоту.

Иными словами, гибридный двигатель по-прежнему был далёк от идеала: он не обладал требуемыми характеристиками и работал неустойчиво.


Стендовые испытания новой модификации гибридного двигателя для SpaceShipTwo. Фото Virgin Galactic

Никуда не делись (больше того – вышли на передний план) и другие проблемы безопасности. В «большой» космической технике, разрабатываемой крупными корпорациями по госзаказу, закладывается многократное резервирование, и космические корабли оснащаются специальными системами аварийного спасения. У частных компаний, как правило, нет ресурсов на сложные разработки, и, соответственно, надёжность создаваемой ими техники заведомо будет ниже.

Руководство Virgin Galactic и Scaled Composites неоднократно подчёркивало, что по показателям безопасности их система будет близка к первым пассажирским самолётам 1920-х годов и в то же время окажется в 100 раз надёжнее шаттла. И Брэнсон, и Рутан обещали первыми отправиться в полёт, причём вместе с детьми. Но в проекте WhiteKnightTwo – SpaceShipTwo безопасность обеспечивалась исключительно простотой конструкции, а также наличием на борту опытных пилотов, поддерживающих навыки постоянными тренировками. И всё! Но это не отменяло исходно опасной схемы полёта (разделение, ракетный разгон, подъём в безвоздушное пространство, изменение геометрии, спуск и торможение в атмосфере). А ведь у лётчиков в каждом полёте будет лишь одна попытка сесть: ракетоплан без топлива не имеет возможности уйти на второй круг или добраться до запасного аэродрома.


Руководство Virgin Galactic и Scaled Composites подчёркивало, что системы WhiteKnightTwo – SpaceShipTwo должна быть в 100 раз надёжнее шаттла

В безатмосферном полёте ракетоплан мог управляться газореактивной системой. Однако её включение считалось нежелательным, поскольку противоречило концепции «наслаждения невесомостью». В результате летательный аппарат мог войти в атмосферу в произвольном положении. Конечно, система стабилизации поворотом хвостовых балок сориентирует его должным образом, но до этого момента перегрузки могут иметь неблагоприятные показатели по величине и направлению.

Ещё одна задача: после нескольких минут невесомости вернуть пассажиров в свои кресла. Бет Мозес (Beth Moses), тренер астронавтов Virgin Galactic, объясняет: «Надеемся, что у них сработает инстинкт самосохранения и они последуют инструкциям пилотов пристегнуться ремнями до того, как появится гравитация». Если пассажир не успеет этого сделать, вся надежда на мягкую обивку стен и пола. Кстати, у туристов нет аварийно-спасательных скафандров на случай разгерметизации салона – только кислородные маски.


Плавание в невесомости внутри салона. Обратите внимание – в данный момент кресла находятся над головой пассажиров. Если вовремя не вернуться на место и не пристегнуться, вся надежда – на мягкую обивку стен и пола. Кадр из 3D-анимации Virgin Galactic

Когда в январе 2012 года во время визита Джорджа Уайтсайдса в Сколково российские специалисты задали ему вопрос в лоб об обеспечении безопасности миссий, он ответил буквально следующее: «Если случится происшествие, у нас будут большие проблемы. Мы разделили полётное задание на четыре ключевых этапа (подъём самолёта-носителя на 15 км, полёт [ракетоплана] в космос, вход в атмосферу и приземление), которые тщательно рассмотрели и постарались сделать максимально безопасными. Система конструируется так, чтобы аномалия в любом этапе не приводила к катастрофе: в случае возникновения аварийной ситуации мы сможем безопасно завершить каждый этап (например, отключить двигатель и спланировать вниз). Конечно… самый безопасный способ – не только никогда не взлетать, но и вообще не выходить из дома…»

С надёжностью и безопасностью тесно связаны вполне «денежные» вопросы страхования суборбитальных туристов, которые до сих пор толком не урегулированы. Надо отдать должное властям США, в данном вопросе они пошли навстречу нарождающемуся бизнесу. Так, поправка к закону о коммерческих космических запусках (Commercial Space Launch Amendments Act of 2004 HR 5382) в 2004 году создала юридические предпосылки для возникновения и развития операторов космического туризма. Управление коммерческих космических транспортных систем Федеральной авиационной администрации (Federal Aviation Administration's Office of Commercial Space Transportation), которое отвечает за лицензирование космических запусков, стало относиться к суборбитальным туристам как к «участникам космического полёта». Данный статус подразумевал, что клиент осознаёт и принимает на себя риски миссии. Позднее, в штате Нью-Мексико был принят закон – «Акт об информированном согласии в отношении космического полёта» (Space Flight Informed Consent Act), ограничивающий размер страховых выплат космическим туристам.

Согласно принятому закону, участники космического полёта должны до старта подписывать отказ от исков, содержащий следующие положения: «Я понимаю и признаю, что в соответствии с законодательством Нью-Мексико фирма-оператор не несёт никакой ответственности за причинение вреда или смерти участнику космического полёта… если увечье или смерть является результатом риска, присущего космическим полётам… Я принимаю на себя все риски участника такого космического полёта».


Статус участника космического полёта и требования по безопасности взаимозависимы

Справедливости ради следует отметить, что до начала туристических полётов по суборбитальным траекториям власти не достигли единства взглядов на обеспечение безопасности: FAA считала себя ведомством, отвечающим за этот вопрос, в то время как NASA полагало, что любые полёты в космос подпадают под его юрисдикцию.

Это странный диспут даже выплеснулся наружу во время слушаний в сенатском подкомитете по торговле, науке и транспорту в марте 2008 года. Председатель подкомитета сенатор-демократ Билл Нельсон (Bill Nelson) заявил, что рассматривает космическое агентство в качестве окончательного арбитра по вопросам безопасности астронавтов. Со своей стороны, Джордж Нейлд (George Nield), отвечающий за коммерческие космические транспортные системы в FAA, заявил, что надзор со стороны его ведомства практически неизбежен: «У нас есть действенная нормативно-правовая среда». Брайан О'Коннор (Bryan O'Connor), в то время начальник управления NASA по безопасности и обеспечению качества, ответил, что Агентство разрабатывает свои собственные, независимые требования по безопасности, охватывающие предлагаемые коммерческие системы для перевозки астронавтов.

Эти разногласия, очевидно, не способствовали положительному решению проблемы. Также стало ясно, что именно вопросы безопасности могут сдвинуть сроки начала коммерческой эксплуатации системы.


Разногласия между FAA (Джордж Нейлд, фото слева) и NASA (Брайан О’Коннор, фото справа) отнюдь не способствовали положительному решению проблемы ответственности за безопасность суборбитальных полётов

Задержки, связанные с устранением многочисленных дефектов проекта, привели к тому, что первый «моторный» полёт ракетоплан выполнил лишь 29 апреля 2013 года – через пять лет после начала лётных испытаний WhiteKnightTwo и через 2,5 года после первого сброса SpaceShipTwo! По первоначальным замыслам, к этому времени корабли Virgin Galactic должны были вовсю «бороздить просторы» и зарабатывать деньги, выполняя по несколько коммерческих миссий в день. В первом полёте командир Марк Стаки (Mark Stucky) и второй пилот Майк Олсбери (Mike Alsbury) достигли на ракетоплане скорости, соответствующей числу М=1,2, и высоты 17 км.

5 сентября 2013 года, во втором «моторном» полёте, Марк Стаки и Клинт Николс (Clint Nichols) достигли скорости, соответствующей числу М=1,43 и высоты 21 км.


Второй полёт SpaceShipTwo с включением ракетного двигателя. Фото MarsScientific.com

10 января 2014 года, в ходе третьего полёта с включением двигателя, SpaceShipTwo поднялся на высоту 23,6 км. В ходе спуска с М=1,4 Дэвид Маккей (David Mackay) и Марк Стаки испытали реактивную систему управления и новое теплозащитное покрытие хвостовых балок. В связи с упомянутыми выше переделками «гибридника» следующий полёт состоялся лишь через девять месяцев.

31 октября 2014 года ракетный двигатель должен был включиться в воздухе четвёртый раз. Поначалу всё шло нормально. Самолёт-носитель с подвешенным под ним ракетопланом взлетел, набрал заданную высоту и сбросил свою ношу.

Питер Сиболд и Майкл Олсбери запустили двигатель, и SpaceShipTwo начал разгон с набором высоты. Но спустя несколько секунд, сразу после перехода через сверхзвук, аппарат внезапно разрушился. Командир чудом спасся, а второй пилот погиб; обломки фантастического корабля усеяли обширную территорию в пустыне Мохаве.


Отделение ракетоплана от самолёта-носителя и включение ракетного двигателя; разгон с набором высоты; смертельный кувырок (SpaceShipTwo летит задом наперёд) и начало разрушения аппарата. Фото AP


Федеральные следователи прибыли на место катастрофы утром 1 ноября. Изучив телеметрическую информацию и обломки, они… выдвинули предположение об ошибке лётчика, которая запустила в действие цепь событий, приведших к катастрофе.

На следующий день на пресс-конференции в Мохаве исполняющий обязанности директора Национального совета по безопасности на транспорте NTSB (National Transportation and Safety Board) Кристофер Харт (Christopher Hart) озвучил первые фактические данные. «Причиной оказалось совсем не то, о чём я беспокоился, – написал Дуглас Мессье. – «Гибридник» вёл себя хорошо. И двигатель, и топливный бак упали на землю практически без повреждений… Аномалия вскрылась совсем в другой области – в системе поворота хвостовых балок, которая используется при возвращении в атмосферу: по заявлению экспертов NTSB, она включилась преждевременно».


Эксперты NTSB осматривают место катастрофы

Пилоты должны были запустить её, когда SpaceShipTwo достигнет скорости, соответствующей числу М=1,4, и большой высоты. Вместо этого балки с оперением развернулись при М=1,02, когда ракетоплан ещё летел в достаточно плотном воздухе, при более высоком скоростном напоре.

По данным NTSB, второй пилот Майкл Олсбери ошибочно переключил рычаг блокировки механизма, переводящего хвостовое оперение ракетоплана из полётного положения в тормозное. Видеокамера в кабине ракетоплана показала, как он смещает рычаг блокировки в момент перехода через звуковой барьер. Лётчик успел осознать ошибку и попытался выключить двигатель, но было уже поздно – тряска аппарата привела к включению приводов, балки развернулись, SpaceShipTwo менее чем за секунду перевернулся в воздухе хвостом вперёд и стал стремительно разрушаться от нерасчётных нагрузок…


Виной катастрофы стал человеческий фактор: 39-летний Майкл Олсбери – опытный лётчик (в частности, испытывал рекордный самолёт Proteus) – не вовремя переключил рычаг блокировки хвостового оперения

В конце июля 2015 года предварительные выводы были подтверждены заключительным докладом NTSB: ракетоплан разрушился из-за преждевременного перевода хвостового оперения в положение «на торможение». Основной причиной катастрофы названа ошибка Майкла Олсбери – он случайно разблокировал механизм поворота оперения на 14 секунд раньше времени. Была установлена и вина проектантов Scaled Composites, которые «не сочли необходимым рассмотреть возможность случившегося и выработать защиту от ошибки оператора, способной привести к катастрофе».

«Путём расследования мы надеялись найти способ предотвратить подобную аварию в будущем», – сказал Кристофер Харт. Следователи подтвердили: судя по документам, в Scaled Composites знали о риске ранней разблокировки системы, но не наложили документальный и явный запрет на операцию в мануалах для пилотов. Теперь компании придётся вносить изменения в конструкцию.


Кристофер Харт (NTSB) описывает ход развития катастрофы. Фото Reuters

Следователи также уделили большое внимание вопросу надзора FAA за разработчиками в предыдущие годы: с одной стороны, Scaled Composites «была открыта к сотрудничеству», с другой — «ряд вопросов каким-то образом был отфильтрован руководством FAA и так и не достиг компании».

Все эти обстоятельства привели к переносу начала коммерческой эксплуатации системы на неопределённый срок. Сами руководители Virgin Galactic уже не рискуют называть какие-либо сроки. «[Аппарат] будет готов [к коммерческим полётам], когда… будет готов. Я не решаюсь уточнять период времени», – заявил Джордж Уайтсайдс.


Джордж Уайтсайдс: «[Аппарат] будет готов, когда… будет готов»

До катастрофы у компании насчитывалось около 750 клиентов, уже заплативших по $250 тысяч за место на SpaceShipTwo. Сейчас их осталось 700. Среди них – такие личности, как Эштон Катчер, Анджелина Джоли, Кейт Уинслет и Стивен Хокинг: они обеспечили Virgin Galactic $175 млн выручки.

Несмотря на неудачу, Ричард Брэнсон не собирается сворачивать программу, в которую уже вложено столько ресурсов. В конце июля Virgin Galactic объявила, что в 2015 году возобновит лётные испытания на втором экземпляре SpaceShipTwo, на этот раз с собственными пилотами. Новый ракетоплан находится в завершающей стадии изготовления. По заявлениям топ-менеджеров, в конструкцию «внесены все изменения, способные увеличить безопасность полётов».

Тем не менее даже среди зачинателей проекта уже прорезаются нотки сомнения в достижимости целей. Ещё в январе 2015 года Ричард Брэнсон писал в своём блоге: «Впервые я со всей серьёзностью задал себе вопрос: правильно ли было поддерживать разработку, которая могла привести к таким трагическим последствиям?»


Ричард Брэнсон: «Правильно ли было поддерживать разработку, которая могла привести к таким трагическим последствиям?»

Однако повторимся: программа не закрыта. Руководство Virgin Galactic, стремясь компенсировать имиджевые и финансовые потери от прошлогодней катастрофы, ищет способы успокоить инвесторов. Для этого Джордж Уайтсайдс предложил резко изменить бизнес-модель, переориентировав компанию… на запуски малых спутников. Фирма делает ставку на быстрое развитие рынка пусковых услуг в данном сегменте. «Сегодня аппараты массой менее 500 кг могут передавать подробные данные обо всем – от солнечной активности до изображений Земли, составлять прогнозы погоды. За последние пять лет индустрия малых спутников выросла в шесть раз: в первом полугодии 2015 года в данном сегменте была заключена двадцать одна сделка на общую сумму $1,17 млрд» — так аргументировал свою позицию Уайтсайдс.

Здесь Virgin Galactic может предложить свои услуги, поскольку с 2009 года разрабатывает сверхмалый носитель LauncherOne воздушного старта для запуска «по требованию». Ракеты ещё нет, но компания OneWeb уже стала крупнейшим клиентом, заказав у Virgin Galactic запуск 39 спутников для орбитальной группировки, обеспечивающей глобальный широкополосный доступ в Интернет...


Virgin Galactic разрабатывает сверхмалый носитель LauncherOne для запуска спутников «по требованию». Изображение Virgin Galactic

Первоначально предполагался старт LauncherOne с самолёта-носителя WhiteKnightTwo, но сейчас экономически целесообразной считается покупка для этих целей коммерческого авиалайнера.

Неужели Ричард Брэнсон утратил веру в суборбитальный туризм? Кто-то думает, что да. Но ряд экспертов считают, что он не закроет проект полностью – сделать это будет сложно из-за проблем, которые могут возникнуть. Например, неясно, как к этому отнесётся инвестор – компания Aabar Investments? Что делать с «космопортами»?

В целом спустя десять лет проект Virgin Galactic выглядит чем-то средним между инновацией, авантюрой и финансовой пирамидой. Надо признать, что энтузиазм относительно суборбитального туризма был преждевременным и необоснованным. Ресурсы, изначально выделенные на разработку, оказались недостаточными: по мере продвижения проекта трудности и проблемы лишь нарастают, пропорционально растёт и потребность в новых финансовых вливаниях. Попытки же решить сложные задачи простыми (а иногда и кустарными) средствами показали свою несостоятельность. Подведём итог: как и 10, и 20 лет назад, будущее суборбитального туризма сегодня теряется в тумане.

 
Последнее редактирование:

tomcat

far away...
Команда форума
Мульти модератор
Российская система покажет все тайфуны и ураганы восточного полушария
30.11.2015 [15:50], Сергей Карасёв
11 декабря с космодрома Байконур будет осуществлён вывод на геостационарную орбиту спутника дистанционного зондирования Земли (ДЗЗ) «Электро-Л» №2, который разработан НПО имени С.А.Лавочкина.

ele1.jpg

Аппарат оборудован новейшим многозональным сканирующим устройством МСУ-ГС — это основной и наиболее сложный прибор орбитального измерительного комплекса. Данная система обеспечит получение высококачественных многоспектральных изображений видимого диска Земли в точке стояния спутника над Индийским океаном на 76° восточной долготы на геостационарной орбите с высотой около 36 тысяч километров. Полученные снимки будут приниматься в Росгидромете и Научном центре оперативного мониторинга Земли АО «Российские космические системы» (РКС) для дальнейшей обработки и анализа.

Камера МСУ-ГС предназначена для оперативного получения с орбиты информации о состоянии атмосферы, почвы и водоёмов Земли. Она поможет наблюдать за появлением и развитием в восточном полушарии чрезвычайных ситуаций — тайфунов, смерчей, ураганов, наводнений, пожаров, вулканической деятельности и других опасных природных явлений.

Устройство будет проводить съёмку одновременно в 10 спектральных диапазонах. Режим учащённой съёмки предназначен для наблюдения за быстро развивающимися динамическими природными процессами — тайфунами, цунами и ураганами. При ускоренной съёмке в сканере формируется изображение не отдельных фрагментов поверхности, как на иностранных аналогах, а всего диска Земли.

ele2.jpg

На новом спутнике «Электро-Л» также установлены бортовой радиотехнический комплекс (БРТК), гелиогеофизический аппаратный комплекс, бортовая система сбора данных (БССД), созданные в «Российских космических системах». Комплекс БРТК служит для высокоскоростной передачи метеорологической и гелиогеофизической информации по линии космос-Земля, сбора и ретрансляции данных с наземных наблюдательных платформ, ретрансляции сигналов от аварийных радиобуев системы КОСПАС-САРСАТ, а также для обмена данными между наземными центрами Росгидромета. БССД служит для приёма информации от сканирующего устройства и гелиогеофизического аппаратного комплекса, а также оперативно-контрольной информации, буферизации её в массиве памяти и формирования транспортного потока данных для передачи по радиолинии через БРТК.

Спутник будет проводить глобальный мониторинг гелиогеофизических параметров для контроля и прогноза активности Солнца, радиационной обстановки, состояния магнитного поля, диагностики и контроля состояния магнитосферы, ионосферы и верхней атмосферы.
 

tomcat

far away...
Команда форума
Мульти модератор
Три процента от орбитальной энергии
Три процента от орбитальной энергии
924795.jpg

09 декабря 2015 Игорь Афанасьев , Дмитрий Воронцов
23 ноября летательный аппарат New Shepard американской компании Blue Origin достиг стокилометровой высоты и совершил точную вертикальную посадку на двигателях недалеко от места старта. В полёте от него отделилась герметичная капсула, которая самостоятельно села на парашютах


Ещё один «нетипичный миллиардер»
Несмотря на то, что технология вертикальной реактивной посадки далеко не нова (вспомним эксперименты с демонстраторами DC-X и Grasshopper, описанные во второй части статьи «SpaceX: путь наверх»), полёт стал важной вехой в космонавтике: по словам разработчиков, им впервые удалось успешно возвратить из космоса многоразовую ракету в состоянии, пригодном для быстрого повторного использования.
Компания Blue Origin со штаб-квартирой в Кенте (пригород Сиэтла, штат Вашингтон) была создана в сентябре 2000 года по инициативе и на средства Джеффа Безоса (Jeffrey Preston «Jeff» Bezos) — главы и основателя интернет-компании Amazon.com, владельца издательского дома The Washington Post и одного из богатейших людей мира, чьё состояние оценивается в $ 46,7 млрд.

Имя Безоса заметно среди бизнес-магнатов, субсидирующих разработки космических средств, таких как Илон Маск, Пол Аллен и Ричард Брэнсон. Их детство пришлось на триумф программы Apollo: пятилетний Джефф с огромным вниманием следил по телевизору за тем, как американцы делали первые шаги по Луне.


Джефф Безос

О том, насколько глубокий след оставили эти детские впечатления, свидетельствует эпопея с двигателями F-1 первой ступени ракеты Saturn-5, которая в июле 1969 года доставила к цели Армстронга, Олдрина и Коллинза. Безос на собственные средства организовал поисковую экспедицию в Атлантике, весной 2012 года обнаружил и через год поднял артефакты лунной гонки с глубины 4300 м.

В отличие от Аллена и Брэнсона Безос не принимал участия в конкурсе Ansari X-Prize. Он решил пойти своим путем, сосредоточившись на разработке бескрылых ракетных систем многократного применения с вертикальным стартом и посадкой для суборбитального туризма и запусков в космос. Тестовый полигон построили в местечке Корн-Рэнч в округе Калберсон (Техас), в 190 км от Эль-Пасо. Гостей, побывавших в штаб-квартире компании, впечатляют офисы и рабочие места, оснащённые самым современным оборудованием. «Если хотите посмотреть, как выглядит клуб миллиардеров, навестите Blue Origin», — как-то пошутил Дэн Раски (Dan Rasky), специалист по системам входа в атмосферу, работающий в Центре имени Эймса (NASA).


Вид с воздуха на полигон в Корн-Рэнч. Фото USGS

В отличие от Маска, уделяющего большое внимание пиару и рекламе своих достижений, Безос практически засекретил работу собственной фирмы, выдавая информацию дозированными порциями. Публику всегда интересуют тайны и загадки. Космонавтика в этом отношении — один из лидеров: секретные спутники военного назначения, «чёрные» программы и закрытые испытательные полигоны. Космические «частники» отдали дань этой традиции: даже фирмы Scaled Composites и Bigelow Aerospace, долгое время «шифровавшиеся», сейчас более открыты. Но не Blue Origin! «Если мы чем-то и известны, то лишь тем, что незаметны, — метко заметил представитель фирмы Гэри Лей (Gary Lai). — Внутри компании есть культура публично говорить только о результатах, а не о планах».


Предприятия компании оснащены по последнему слову техники. Фото Blue Origin

#Ракетные «секретики»
Концептуальной печкой, от которой Blue Origin стала танцевать, выбрали демонстратор DC-X: первым разработали экспериментальный аппарат Goddard PM1 (назван в честь пионера американской ракетной техники Роберта Годдарда) с девятью двигателями BE-1 на монотопливе — высококонцентрированной перекиси водорода. После ракетного старта и вертикального разгона следовал пассивный полёт по крутой баллистической траектории до апогея, затем снижение и реактивная вертикальная управляемая посадка на двигателях.

Внешней формой аппарат напоминал конфету-трюфель и компоновался по принципу «всё в одном»: в корпусе без отделяемых частей размещались двигательная установка с топливными баками, служебные системы и кабина экипажа. Управление — исключительно бортовыми компьютерами, без команд с земли, взлёт и посадка — на четыре амортизационные опоры.



Скриншоты с роликов показывают решётку двигателей и посадочные опоры аппарата Goddard PM1. С видео Blue Origin

Несколько лет работа над проектом шла тихо и незаметно. Никаких данных о характеристиках аппарата не публиковалось. Для отработки предпосадочного маневрирования на малой высоте построили беспилотный прототип Charon c четырьмя воздушно-реактивными двигателями. 5 марта 2005 года он успешно поднялся на высоту 96 м и мягко сел. Затем в январе 2007 года Безос заявил о том, что Goddard впервые взлетел 13 ноября 2006 года. Весь полёт длился 25 с, была достигнута высота… 87 м! Из-за невысокого качества видео невозможно было представить даже масштаб аппарата.


Charon для отработки предпосадочного маневрирования на малой высоте. Фото Ted Huetter/The Museum of Flight

Пока эксперты рассуждали о возможностях «новой суборбитальной системы», гадая на кофейной гуще, в 2007 году Goddard выполнил ещё два полёта, отрабатывая вертикальный взлёт и приземление и демонстрируя возможность управляемой реактивной посадки. Наконец-то появились приличные фото: «конфету» везли на грузовике, она была большая и выглядела вполне себе ничего. Тем не менее представители Blue Origin заявили: «Не придавайте слишком большого значения прототипу. Совсем не обязательно, что штатное изделие — New Shepard — будет выглядеть так же».


Прототип (Goddard) везут на запуск. Фото Blue Origin

Так и вышло. Несмотря на относительный успех лётных испытаний, компания решила изменить схему — теперь система должна была состоять из двух спасаемых компонентов: герметичной капсулы и ракетного модуля.

Прототип New Shepard PM2 (назван в честь первого американского астронавта Алана Шепарда, совершившего суборбитальный прыжок 5 мая 1961 года) для отработки полёта на сверхзвуковых скоростях и больших высотах внешне напоминал бочонок с полусферическими днищами, опирающийся на четыре «лапки» и оснащённый пятью ВЕ-2. В отличие от предшественников, они работали на двухкомпонентном топливе — высококонцентрированной перекиси водорода и керосине.

21 мая 2011 года состоялся первый старт. Параметры PM-2 неизвестны, сообщалось лишь, что он тяжелее РМ-1. Полёт проходил на пониженной тяге: из пяти двигателей включались лишь три, а мягкая посадка выполнялась на двух.




Компания не анонсировала своих планов, но Федеральное управление гражданской авиации FAA (Federal Aviation Administration) выпустило предупреждения, предписав всем самолётам утром 24 августа держаться вне воздушного пространства в районе города Ван-Хорн (Техас) «по причине ракетной пусковой активности» Blue Origin.

На этот раз включались все пять BE-2. После пуска аппарат достиг высоты 13,7 км и скорости, соответствующей числу М=1,2, но затем потерял устойчивость и вышел на запредельные углы атаки. Сработала система автоматического прекращения полёта, и PM-2 погиб. Чтобы определить характер и причины отказа, специалисты анализировали телеметрию и «останки»…

#Летающая «гантель»
Авария нанесла удар по планам Безоса и других энтузиастов частного космоса. «Это не тот результат, который хотелось увидеть, — сказал Джефф. — Но мы понимали, что будет трудно. Команда Blue Origin делает большую работу… Уже строим следующий опытный экземпляр летательного аппарата».

Несмотря на неудачу, PM-2 стал отправной точкой для формирования концепции оперативных систем. С его помощью предполагалось отработать многоразовые элементы как будущего суборбитального туристического «космолёта», так и частично многоразового орбитального транспорта. Первый делался в виде ракетного блока с отделяющейся пассажирской капсулой, второй представлялся двухступенчатым (первая ступень — многоразовая, с вертикальной посадкой на двигателях, вторая — одноразовая), также с отделяемой капсулой.


Схема полёта туристического аппарата New Shepard. Графика Blue Origin

Туристическая кабина-капсула рассчитана на доставку шести человек на высоту свыше 100 км. По форме она напоминает нечто среднее между демонстратором Goddard и спускаемым аппаратом «Союза», имеет объем около 15 кубометров и шесть огромных иллюминаторов — пожалуй, это самые большие окна, применённые на летательных аппаратах. При старте экипаж размещён в креслах, допускающих индивидуальную регулировку. Система приземления включает три тормозных и три основных парашюта, каждый закрыт индивидуальным люком. Капсула оснащена «толкающей» системой аварийного спасения (19 октября 2012 года состоялись её лётные испытания).


Лётные испытания системы аварийного спасения. Фото Blue Origin

Ракетный блок многократного использования оснащён одним двигателем ВЕ-3, работающим на жидком кислороде и жидком водороде. Это единственное в мире изделие, привод турбонасосного агрегата которого обеспечивает отбор горячего газа из основной камеры. Двигатель обладает способностью к глубокому дросселированию: на этапе посадки его тяга может быть уменьшена со штатных 50 тс примерно до 9 тс. На сегодня это первый в мире маршевый криогенный двигатель, спроектированный и доведённый до лётного состояния частной компанией.

Разработка началась в 2006 году. BE-3 прошёл цикл огневых испытаний (наработал 30 тыс. секунд в 450 тестах, в том числе на стенде Е-1 Космического центра имени Стенниса (NASA)), достаточный, как считают его создатели, для продажи коммерческим компаниям с целью использования в ракетных ступенях.


Огневые стендовые испытания двигателя BE-3. Фото Blue Origin

Оригинальная особенность ракетного блока — кольцевой стабилизатор в верхней части, одновременно играющий роль переходника полезной нагрузки. При спуске модуля «двигателем вперёд» его задача — сместить аэродинамический фокус возможно дальше от «хвоста», чтобы обеспечить статическую устойчивость аппарата. В этом кольцевому стабилизатору помогают четыре выдвижных «пера». Кроме того, торможение в атмосфере облегчают восемь щитков, раскрывающихся из кольца, — они вдвое снижают скорость спуска.

В хвостовой части блока, кроме двигателя, который качается в карданном подвесе, расположены четыре аэродинамических руля-стабилизатора — они облегчают устойчивость при старте и управляемость при посадке. Из боков хвостового отсека выдвигаются четыре посадочные опоры.

Схема полёта проста. После старта двигатель разгоняет аппарат до высоты примерно 40 км; дальнейший подъём проходит по инерции. В районе апогея траектории от ракетного блока отделяется капсула с экипажем. Далее оба компонента совершают автономный спуск. Капсула приземляется на парашютах, а ракетный модуль выполняет реактивную посадку. Приземлившийся блок имеет вид поставленной вертикально гантели для фитнеса.


Ракетный модуль перед посадкой. Графика Blue Origin

#Как птичье перо
Первый полет New Shepard выполнил на полигоне Корн-Рэнч 29 апреля 2015 года для проверки работоспособности и возможности повторного использования. Вопреки обыкновению, Blue Origin выложила в Сеть видеоролики в высоком разрешении о подготовке и пуске системы.


После сборки в закрытом ангаре аппарат в горизонтальном положении уложили на стрелу автомобильного установщика и по обычной грунтовке доставили на стартовый комплекс, где ракету установили в пусковое устройство простой формы (опора и газоотражатель).

От команды «Зажигание» до отрыва системы от стартового стола прошло около 8 секунд. Вероятно, в это время проверялись параметры двигателя. Аппарат довольно бодро ушёл в воздух. Кадры бортовой видеокамеры (rocket-cam) на фоне холмов показали длиннопериодические колебания изделия относительно вертикали — система управления парировала возмущения.

К концу активного участка траектории New Shepard разогнался до скорости, соответствующей числу М=3, после чего капсула отделилась от ракетного блока. В пассивном полёте была достигнута высота 307 тыс. футов (около 94 км). Попытка спасения модуля закончилась неудачей: из-за дефекта в пневмогидравлической системе двигатель повторно не запустился, и блок разбился. А вот мягкая посадка капсулы на парашютах завершилась полным успехом.


Капсула спускается на парашютах. Фото Blue Origin

«Мы запустили в первый испытательный полёт разработанный нами космический аппарат New Shepard… — заявил Джефф Безос в пресс-релизе, выпущенном после запуска. — Двигатель ВЕ-3 на жидком кислороде и жидком водороде работал безупречно... Наведение, навигация и управление функционировали штатно на всем протяжении полёта... В космическом пространстве капсула экипажа красиво отделилась от ускорителя… Если бы на борту были астронавты, они совершили бы прекрасное путешествие в космос и плавно вернулись на Землю».

Неудача со спасением ускорителя комментировалась скромнее: «Если бы New Shepard был традиционным одноразовым аппаратом, это был бы безупречный первый испытательный полет. Поскольку одной из наших целей является возможность многократного использования, мы с сожалением констатируем, что не смогли спасти ракетный блок, потому что потеряли давление в гидравлической системе на спуске. К счастью, мы уже работаем над усовершенствованной системой и ведём сборку модулей с серийными номерами 2 и 3...»


Второй полёт, состоявшийся через семь месяцев, как мы уже знаем, завершился полным триумфом. Видео пуска дали новые подробности подготовки. В лучших традициях съёмка была эмоциональной и велась с нескольких точек. Перед стартом проверялась работа всех выдвижных устройств, а также рулей на хвостовом отсеке. Rocket-cam показал вертикальный подъем, отделение капсулы и раскрытие парашютов. Максимальная зафиксированная высота (для капсулы) составила 329839 футов (100,6 км), скорость соответствовала числу М=3,72. При посадке двигатель повторно включился на высоте 4896 футов (1493 м) и работал около 23 секунд, выполнял активные перекладки и манёвры для обеспечения точной посадки. Ракетный блок с нарисованным на борту чёрным пером на несколько мгновений завис над землёй и совершил мягкое приземление всего в 4,5 футах (1,37 м) от центра бетонированного «пятачка». Вертикальная скорость перед касанием не превышала 4,4 мили в час (2,2 м/с).


Ракетный блок после мягкой посадки. Фото Blue Origin

#Роман с NASA
Таким образом, Blue Origin продемонстрировала способность решать сложные инженерные задачи, превзойдя Virgin Galactic и вплотную приблизившись к SpaceX (или наоборот — всё зависит от точки зрения на пилотируемые полёты). При этом, по некоторым данным, Безос истратил за десять лет всего (!) $500 млн при совокупной команде в 300 человек. Серьёзных проблем с финансированием у компании ещё не было — Джеффри занимает 147-е место в списке миллиардеров по версии Forbes и умело распоряжается собственными средствами.

Blue Origin планирует отправлять в полёт туристов, а также запускать суборбитальные научные приборы. Компания надеется совершать пуск раз в неделю, чтобы конкурировать с ракетопланом фирмы Virgin Galactic. Когда точно New Shepard отправится в первую обзорную экскурсию, пока не известно: запуску должны предшествовать тщательные испытания капсулы и ракетного блока. Тем не менее, по последним сообщениям компания намерена осуществить первый пилотируемый полёт уже в 2016 году.


Безос надеется осуществлять четыре суборбитальных полёта New Shepard в месяц. Графика Blue Origin

Безос никогда не скрывал, что не намерен ограничиваться лишь «субтуризмом». К началу объявленной NASA программы оказания коммерческих орбитальных транспортных услуг COTS (Commercial Orbital Transportation Services) Blue Origin не успела. Однако первые положительные результаты в разработке ракетных систем позволили компании войти в последующие коммерческие проекты Агентства.

В 2009 году Blue Origin стала участником первого этапа программы разработки коммерческих средств доставки экипажей CCDev (Commercial Crew Development), получив $ 3,7 млн на развитие концепций и технологий в поддержку будущих космических операций. NASA финансировало работы по снижению рисков, связанных с наземными испытаниями двух агрегатов Blue Origin:

- «толкающей» двигательной установки системы аварийного спасения, позволяющей снизить расходы на запуск (входит в состав многоразового пилотируемого аппарата и может использоваться повторно) и повысить безопасность экипажа, поскольку её не надо сбрасывать;

- композитной гермокабины экипажа, обеспечивающей снижение массы конструкции при одновременном повышении безопасности астронавтов.


Джефф Безос показывает композитную гермокапсулу первому заместителю Администратора NASA Лори Гарвер. Фото Blue Origin

8 ноября 2010 года фирма завершила все работы согласно данному этапу программы CCDev. Позже Безос объяснил, что названные агрегаты входили в систему для пилотируемой капсулы биконической формы, которую сначала предполагалось запускать на орбиту ракетой Atlas V, а потом — на многоразовом ускорителе собственной разработки, о котором говорилось выше.

В апреле 2011 года NASA обязалось профинансировать второй этап CCDev, компенсировав Blue Origin расходы в размере $ 22 млн на концептуальный проект (с защитой) пилотируемого орбитального корабля, незатейливо названного Reusable Orbital Space Vehicle (ROSV). Кроме того, можно было продолжить совершенствование системы аварийного спасения и форсировать создание кислородно-водородного BE-3.

Объявляя в августе 2012 года решение о разработке пилотируемых аппаратов для МКС, NASA не упомянуло Blue Origin в числе участников этапа создания интегрированных средств коммерческой доставки экипажей CCiCap (Commercial Crew Integrated Capability). В то же время отмечалось, что компания продолжит работы за счёт частного финансирования.


Интересный тортик — в качестве свечек изображены ракетно-космические системы Blue Original (ROSV), Boeing (CST-100), Sierra Nevada (Dream Chaser) и SpaceX (Dragon). Графика NASA

Какое-то время СМИ почти ничего не сообщали об этой деятельности Безоса. Но 14 ноября 2014 года NASA объявило, что двумя месяцами ранее Blue Origin провела промежуточную защиту проекта подсистем своего корабля в рамках этапа CCDev2 без финансирования со стороны Агентства: «В октябре 2014 года NASA и Blue Origin решили дополнить имеющийся между ними договор тремя элементами и продолжить партнёрскую работу. На собственные средства фирма проведёт дальнейшее тестирование ёмкостей, двигателя BE-3 и «толкающей» двигательной установки системы аварийного спасения», — говорилось в выпущенном пресс-релизе.

«Команда Blue Origin добилась огромного прогресса в своём проекте, и мы рады продлить сотрудничество до 2016 года, — заявила Кэти Людерс (Kathy Lueders), менеджер коммерческой пилотируемой программы NASA. — Важно держать руку на пульсе коммерческой индустрии пилотируемых полётов в целом, и это партнёрство — яркий пример хорошей совместной работы промышленных и правительственных структур».

#Маленькая фирма сделает большой двигатель?
Если кооперация с NASA развивалась на протяжении ряда лет и освещалась в прессе, то контракт с Объединённым пусковым альянсом ULA (United Launch Alliance) стал «ударом грома». Согласно договору, подписанному в сентябре 2014 года, Blue Origin обязалась спроектировать, отработать и поставить мощный двигатель ВЕ-4 тягой 250 тс для ракет-носителей типа Atlas V.

Новое изделие должно обеспечить независимость от поставок российского РД-180, который стал предметом нападок со стороны американских политиков после объявления антироссийских санкций. Стоимость замены оценивается не менее чем в $ 1,5 млрд, сроки — в пять-семь лет.


Тони Бруно (ULA) и Джефф Безос (Blue Origin) представляют проект двигателя BE-4. Фото Bloomberg Finance

При обсуждении военного бюджета США на 2015 год, по инициативе сенатора-республиканца Джона МакКейна (John McCain) в законопроект были внесены серьёзные поправки. Первая запрещает министру обороны США подписывать новые или продлевать существующие контракты с пусковыми компаниями, предусматривающие запуск с использованием двигателей российской разработки или производства. Исключение может быть сделано в случае, если это необходимо для национальной безопасности и если запуск не может быть закуплен «по честной и разумной цене» без применения таких двигателей. Вторая требует заменить РД-180 американским аналогом не позднее 2019 года, причём новый двигатель должен быть доступен для всех провайдеров пусковых услуг Соединённых Штатов. 4 декабря 2014 года законопроект согласовали представители обеих палат, 12 декабря его одобрил Сенат, а 19 декабря билль получил подпись президента Обамы и стал законом…

Предвидя подобное развитие ситуации, ULA, выполняющий пуски носителей Atlas и Delta (на первом и стоит РД-180), заблаговременно разослал запросы на предложения нескольким двигателестроительным компаниям. Одной из первых откликнулась Blue Origin. Пикантность предложения состояла в том, что фирма Безоса новая и неизвестная, а ВЕ-4 мало того, что строится по нетипичной для американской ракетной школы сложной замкнутой схеме с дожиганием окислительного генераторного газа, но ещё и работает на жидком кислороде и сжиженном природном газе (СПГ).


Схема даёт представление о размерах BE-4. Графика Blue Origin

Трудно сказать, почему высшие чины ULA выбрали предложение Безоса (эксперты полагают, что проект стартовал довольно давно). «Благодаря партнёрству [с Blue Origin] у нас появилась возможность сократить цикл разработки в два раза, — заявил исполнительный директор ULA Тори Бруно. — Это означает, что уже примерно через четыре года с этого момента мы сможем начать запуски ракет с двигателями, построенными по данной технологии». В свою очередь, Безос отметил, что Альянс делает значительные инвестиции в Blue Origin, но отказался указать конкретные цифры.

Он заявил: «Команда Blue Origin методично разрабатывает технологии резкого снижения стоимости и повышения надёжности пилотируемого доступа в космос, и BE-4 является большим шагом вперёд. Партнёрство с ULA позволит нам ускорить разработку мощного американского ракетного двигателя следующего поколения».

По традиции Blue Origin даёт о двигателе минимум информации. Выяснилось, что испытания компонентов уже идут на объекте в Кенте (Вашингтон) и в специальном центре по тестированию СПГ, созданном компанией в Ван-Хорне (Техас). По словам представителей Blue Origin, там ведётся разработка масштабной модели газогенератора и могут проходить проверки турбонасосов и клапанов вплоть до полномасштабных прожигов «боевых» двигателей…


Огневые стендовые испытания агрегатов BE-4 идут уже несколько лет. Фото Blue Origin

#Фантастические перспективы
BE-4 планируется ставить на перспективный носитель ULA под названием Vulcan, который должен заменить ныне используемые Альянсом ракеты Atlas V и Delta IV. Комплексные испытания двигателя должны начаться в 2016-м и завершиться в 2017-м.

На верхней ступени нового носителя может найтись место и «ветерану» ВЕ-3. Вначале на Vulcan будут ставить применяемый ныне разгонный блок Centaur, который в дальнейшем заменит перспективная криогенная ступень ACES (Advanced Cryogenic Evolved Stage). В качестве двигателя последней рассматриваются BE-3U фирмы Blue Origin, RL10 Aerojet-Rocketdyne или новая разработка ещё одного «частника» — XCOR Aerospace.


Перспективный носитель Vulcan должен заменить ракеты Atlas V и Delta IV. Графика ULA

Кроме того, ULA и Blue Origin сообщили о планах возвращения и повторного использования первой ступени ракеты. В отличие от конкурентов из SpaceX, они не собираются спасать ракетный блок целиком, а предполагают приземлять только хвостовой отсек с двигателем. При пуске Vulcan стартует как обычная ракета. После окончания работы BE-4 вторая ступень с полезным грузом продолжает полет, а хвостовой отсек отделяется от первой ступени и, закрытый от высокой температуры надувным теплозащитным экраном, входит в атмосферу. После аэродинамического торможения срабатывает парашют, и отсек начинает медленно опускаться. В воздухе его перехватит грузовой вертолёт CH-47 Chinook: он зацепит блок специальным крюком, отсоединит парашют и доставит груз на землю в целости и сохранности. После дефектации и ремонта хвостовой отсек с двигателем установят на следующую первую ступень ракеты Vulcan, подготовленную к пуску.

Всего на разработку нового двигателя и носителя обе компании планируют потратить четыре года и около $ 2 млрд. Первый полёт ракеты должен состояться в 2019 году, а спасение хвостового отсека с двигателями — в 2024 году. Стоимость пуска планируется держать на уровне $ 100 млн, что на $ 65 млн ниже, чем у Atlas V, и сопоставимо с ценой на коммерческую миссию «Протона-М». Таких экономических показателей можно достигнуть при частоте в 10-12 пусков в год.


Схема возвращения и повторного использования двигательного отсека носителя Vulcan. Графика ULA

Не забывает Blue Origin и о собственных орбитальных планах. Примерно год назад компания подробнее рассказала о проекте своей многоразовой ракеты. «Мы по-прежнему большие поклонники архитектуры вертикального взлёта и вертикальной посадки — она масштабируется до очень большого размера, — сообщил Безос. — В проекте следующий вариант New Shepard: его «очень большой брат» — орбитальный носитель, который во много раз крупнее по размеру и оснащен двигателем ВЕ-4 на жидком кислороде и СПГ». На второй ступени должен стоять «водородник» ВЕ-3.

Официальная презентация проекта состоялась 15 сентября на территории «Космопорта Флорида» — коммерческой компании, созданной властями штата, которая арендует у ВВС США стартовые комплексы LC-46 и LC-36 на станции ВВС «Мыс Канаверал». В присутствии губернатора Флориды Рика Скотта (Rick Scott) и сенатора Билла Нельсона (Bill Nelson) Джефф Безос объявил о приобретении и реконструкции стартового комплекса LC-36: «Сегодня мы объявили о том, что будем отправлять наши корабли в космос с этой площадки на территории Флориды. Мыс Канаверал всегда был вратами человечества к самым захватывающим приключениям. Когда я был ребёнком, меня всегда вдохновляли космические гиганты, ракеты «Сатурн V», которые просыпались и поднимались, рыча, в космос. Теперь мы возвращаемся сюда и начинаем новую эру в истории изучения космоса». Компания Blue Origin намерена инвестировать в проект $ 200 млн.

#Вместо эпилога: Маск vs Безос
Успехи команды Безоса нашли отклик не только у публики, но и у конкурентов. К последним следует отнести Илона Маска. До недавних пор он воздерживался от проявления ревности, однако дал ей волю, как только сам отказался от затей с парашютным спасением ступеней и обратился к технологиям ракетной вертикальной посадки.

Надо отдать должное Безосу — он первым из частников добился серьёзных успехов на этом поприще. Его демонстраторы уже летали и показывали определённые результаты, когда Маск ещё занимался «малышом» Falcon 1. При этом Безос никогда не утверждал, что его ракета — первая, которая успешно осуществила вертикальный взлёт и посадку.


Методы спасения ступеней, предложенные Маском и Безосом, во многом аналогичны. Скриншот с YouTube-видео SpaceX и Blue Origin

Когда Маск пришёл к идее посадки ступени на баржу, оказалось, что патент на этот способ принадлежит… Blue Origin: ещё в июне 2010 года фирма подала заявку на тему «Морская посадка космических ракет-носителей и связанные с этим системы и методы», описав систему запуска со стартовой площадки на берегу с последующей вертикальной посадкой ракеты на морскую платформу на двигателях хвостом вперёд. Патент был выдан в марте 2014 года.

Маск подал в суд и в начале сентября 2015 года выиграл дело: в опубликованном решении Американского патентного суда и Апелляционного совета удовлетворено ходатайство об отклонении оставшихся 13 из 15 ходатайств Blue Origin, касающихся её патентных прав на технологию посадки ракеты. В свою очередь, компания Безоса также отозвала данные ходатайства, полностью признав таким образом тот факт, что дело проиграно. SpaceX оспорила патент, ссылаясь на предыдущие работы, в которых задолго до этого предлагалась технология, подобная описанной в патенте Blue Origin. «Светила ракетостроения в курсе того, что патент №321 был уже неактуален как минимум к 2009 году», — говорится в петиции, поданной SpaceX.


Схема посадки многоразовой первой ступени на баржу в патенте Blue Origin

Ноябрьский успех заставил Маска поздравить Безоса в твиттере. Но и здесь не обошлось без троллинга — похвала Blue Origin превратилась в рассказ о достижениях Space X, снабжённый серией разъяснений, почему достижение конкурента не значительнее собственных. Воспользовавшись тем, что в аннотации к опубликованному на YouTube видео с записью испытаний говорится о полёте ракеты Безоса в космос, Маск посвятил отдельное сообщение разнице между суборбитальным прыжком и выходом на орбиту. Илон отметил, что для последних аппарат должен развить скорость примерно на порядок выше той, с которой летел New Shepard.

Такое поведение было сочтено неприличным, и кое-кто из любителей космонавтики заявил, что «Безос утёр нос Маску». Всё же, сохраняя объективность, надо признать, что сейчас SpaceX работает над гораздо более сложной задачей спасения ракетной ступени, которая много тяжелее и крупнее, чем New Shepard, да и летает быстрее. Впрочем, этот факт никак не умаляет достижений Blue Origin.
 

Isanka

Активный пользователь
Украинская ракета вывела на орбиту российский спутник

С космодрома Байконур стартовала украинская ракета «Зенит-2SБ» с российским метеорологическим спутником, передает «Интерфакс».

Вторая ступень отделилась от ракеты в 16:54. До орбиты на высоте 37 тысяч километров спутник долетит через девять часов после старта, который произошел в 16:45.

Запущен спутник «Электро-Л №2», его предшественник находится на орбите с 2011 года, с конца 2014 года он работает в ограниченном режиме. Третий аналогичный аппарат находится в разработке.

Космический аппарат предназначен для «многоспектральной съемки Земли в видимом и инфракрасном диапазонах с разрешением один и четыре километра соответственно», сообщал ТАСС.

Сообщалось, что это может быть последним совместным пуском «Зенита» из-за ухудшения отношений Москвы и Киева. У России есть еще одна украинская ракета, однако для ее запуска нужны специалисты из страны-производителя.
https://slon.ru/posts/61107
 

Isanka

Активный пользователь
«Добро пожаловать домой, детка!» - написал в своём твиттере Элон Маск, основатель частной космической компании SpaceX. Его «детка» - настоящий монстр: ростом с 23-х этажный дом и только что вернулась из ближнего космоса - речь идёт о ракете Falcon 9, которая вывела на орбиту сразу 11 спутников связи, а затем (впервые в мире) совершила мягкую посадку.

Космос как национальный приоритет
Наши расходы на космос за последние 10 лет выросли в 14 раз и в 2013г. достигли внушительных $10 млрд. У американцев в абсолютном выражении всё равно больше - $41,3 млрд., но по отношению к ВВП на нашу космическую программу мы тратим непропорционально много.

По отношению государственных расходов на космос к ВВП мы уверенно занимаем первое место в мире среди главных космических держав: в 2013г. США потратили $25 на каждые $10 тыс. ВВП, Китай - $4, а Россия - целых $47!

Казалось бы, такое пристальное внимание к теме космоса со стороны государства должно дать развитию отечественной космической промышленности мощный толчок, и привести к грандиозным успехам, но..

Не «спутник», а «satellite»
Основные деньги в отрасли сейчас зарабатывают на полезной нагрузке - телекоммуникационных и навигационных спутниках, и с ними у нас есть серьёзная проблема.

Проблема заключается в том, что у нас нет современных спутников. Мы либо покупаем их в полностью готовом виде, либо собираем из импортных модулей, либо строим сами, но из импортных элементов. Даже наши крупнейшие операторы спутникового телевидения (НТВ+ и Триколор ТВ) используют европейский спутник Eutelsat.

История ровно такая же, как с «отечественным смартфоном» YotaPhone, который разработали в Сингапуре, а производят китайцы из корейских комплектующих с американской операционной системой.

Причина нашего отставания проста: ещё в 1954 году коммунисты настолько успешно поборолись с кибернетикой, что у нас до сих пор нет ни нормальных процессоров, ни даже элементной базы, а то немногое, что успели наработать в СССР, было успешно угроблено в «лихие 90-е».

Из отечественных комплектующих делаются разве что спутники системы Глонасс, группировку которых на дне Тихого океана мы регулярно пополняем.

Увы, затраты на создание отечественных спутников в четыре раза превышают зарубежные стандарты, а средние ожидаемые сроки эксплуатации российских спутников составляют 6,3 года, тогда как у Китая - 7,4 года (для сравнения у США и Европы - 9,9 и 10,2 года соответственно.

В результате нам приходится заниматься преимущественно запусками чужих спутников, а наша доля в мировой космической индустрии оказалась исчезающе мала - около 0,5%. Но, может быть, мы хотя бы умеем хорошо запускать ракеты?

Ракетная рулетка
Хорошо, но не совсем. У нас очень высокий уровень аварийности - 6,2% против 2,1% у США и 2,4% у Китая.

Интересно, что чем новее наши ракеты, тем выше уровень их аварийности. Вот данные за последние 10 лет:

Самый надёжный носитель - «Союз-У», разработанный ещё в 1970-1973 гг. Он падает «всего» в 3,8% запусков.

На втором месте - «Союз-2» образца 2004 года, представляющий собой модернизированный «Союз-У», в котором аналоговая система управления заменена на цифровую. Новая, улучшенная ракета падает уже в два раза чаще - в 7,4% запусков.

Следующая по аварийности - лёгкая ракета «Рокот», сделанная на базе военной баллистической ракеты УР-100Н в 1990. Её аварийность - 9,1%. Можете, кстати, по ней оценить эффективность нашего ядерного щита: скорее всего, каждая десятая из наших ядерных боеголовок упадёт на нашу же территорию.

И, наконец, печально известный лидер - ракета Протон-М с аварийностью 11,3%. Первая ракета этого семейства была разработана в 1961-1967 гг., последняя версия - в 2009 г., но лучше от этого не стала.

Из-за высокой аварийности российские запуски страхуются намного дороже, чем иностранные: 13-16% у нас против 6-10% в отношении зарубежных космических аппаратов.

Тем не менее, наши ракеты пользовались устойчивым спросом. Секрет прост: запуск «Протона» обходился в разы дешевле, чем у аналогичных иностранных ракет с той же полезной нагрузкой. До 2015 года запуск «Протона» стоил около $100 млн., сейчас - $70 млн.

Низкая цена - наше основное конкурентное преимущество и Маск покусился именно на него.

«Сокол» против «Протона»
Запуск ракеты Маска - «Falcon 9» (в дословном переводе - Сокол) уже сейчас стоит $60 млн., что делает его более привлекательным для вывода на орбиту грузов массой до 13 тонн. Правда, «Протон» при чуть более высокой цене может вывести в два раза больше груза - до 28 тонн.

На днях компании Маска удалось успешно вернуть первую ступень ракеты «Falcon 9», что в перспективе позволит снизить стоимость её запуска примерно на 9 миллионов. (Себестоимость ракеты-носителя около 16 миллионов, 60-70% из которых приходится на первую ступень.)

Следующий шаг Маска - ракета «Falcon Heavy», первый запуск которой планируется на май 2016 года. Стоимость запуска этой ракеты всего $90 млн. при полезной нагрузке до 53 тонн., что сразу делает стоимость вывода 1кг. груза на орбиту принципиально дешевле, чем у «Протона» - $1698 за 1кг. А использование в ней возвращаемых ступеней даёт в перспективе преимущество по цене более чем в 2,5 раза - $1154 против $3043 за килограмм.

Можем ли мы этому что-то противопоставить? Нет. Разработанная нами перспективная ракета «Ангара» сейчас стоит намного больше «Протона» и вряд ли станет дешевле даже при массовом производстве.

Производитель «Протона» и «Ангары» - ГКНПЦ имени М. В. Хруничева. Это громадное госпредприятие, на котором работает 43500 человек. Сейчас, правда, планируются массовые сокращения: в 2016 году планируется уволить только менеджеров 600 человек. Для сравнения: в период разработки ракеты «Falcon 9» в SpaceХ работало всего 500 человек. Сейчас в SpaceХ работает около 4000.

Даже если вывести за скобки свойственную нам коррупцию и технологическую отсталость, то разрыв в уровне эффективности ГКНПЦ имени М. В. Хруничева и SpaceХ настолько колоссален, что о какой-то сопоставимой себестоимости говорить не приходится в принципе.

Траектория спуска
Если бы у нас всё ещё были шальные нефтяные деньги, то государство могло бы субсидировать производство ракет, привычно называя это «поддержкой высокотехнологичных отраслей» и делать запуски себе в убыток. Сейчас этих денег нет и финансирование космоса на 2016-2025 гг. урезается с 2,4 до 1,5 трлн. руб.

Уже заказанные и изготовленные ракеты будут запущены, а затем количество запусков - как коммерческих, так и для собственных нужд, резко сократится. Малое количество запусков поднимет их реальную себестоимость ещё выше, усугубив отставание.

Разработка новых носителей, способных конкурировать с иностранными, значительно затормозится. Отрасль попадёт в «яму» низкой эффективности, из которой в текущей экономической реальности ей не выбраться.

Если ничего не изменится, то постепенно мы начнём проигрывать лидерство по запускам США, Китаю, ЕС а в перспективе и Японии.
http://zhartun.me/2015/12/musk.html
 

ПосетительМузея

Чиффа на прогулке
1) Вряд ли 1-я ступень (которая вернулась) имеет длину с 23-этажный дом. А пневматика отделения этой ступени уже к 3-4 запуску может поизноситься
2) УР100 потому и используют для запусков спутников, что их срок эксплуатации заканчивается
Но самое интересное - почему Маск внезапно отказался сажать ракету на баржу? До сих пор он не понимал, что на твердую (и неподвижную!) землю сажать проще?
 

ask

Местный
...ученые рассматривают карту реликтового излучения, аномалии на которой интерпретируют как следы существовавших в предыдущем эоне Вселенной высокоразвитых технологических сообществ.
Во-первых, цивилизации предыдущего эона могли хотеть при помощи своих посланий предупредить сообщества современного эона о своей судьбе и таким образом дать им некоторые напутствия.
Во-вторых, послание от сверхцивилизаций могло содержать необходимые для возникновения жизни данные.

Последнее согласуется с гипотезой информационной панспермии, согласно которой появлении жизни на Земле явилось результатом занесения из космического пространства так называемых «зародышей жизни».
http://www.liveinternet.ru/users/leda_avetis/post380534046/
 

ПосетительМузея

Чиффа на прогулке
И ведь 'Новые горизонты' - не такой уж технически сложный и не запредельно дорогой проект. Почему? Почему такие корабли не запускают десятками?
 

tomcat

far away...
Команда форума
Мульти модератор
Сборка зеркала телескопа «Джеймс Уэбб» завершится в начале 2016 года
30.12.2015 [16:51], Сергей Карасёв
Национальное управление США по воздухоплаванию и исследованию космического пространства (NASA) рассказало о том, как идёт сборка зеркала телескопа «Джеймс Уэбб» (James Webb Space Telescope) — орбитальной обсерватории, которая придёт на смену «Хабблу» (Hubble).

jw1.jpg

Новый телескоп будет обладать составным зеркалом размером 6,5 метров (диаметр зеркала «Хаббла» равен 2,4 метра) с площадью собирающей поверхности 25 м2. Поскольку габариты цельного зеркала не позволили бы разместить его в ракете-носителе, было решено использовать конструкцию из 18 сегментов, которые будут раздвинуты на орбите.

Установка первых шестигранных элементов зеркала началась около месяца назад. Каждый из фрагментов имеет размер примерно 1,3 метра от ребра до ребра и весит 40 кг. При их изготовлении применяется особый тип бериллия, что необходимо для сохранения формы при криогенных температурах.

jw2.jpg

Для установки сегментов служит специальный манипулятор. Инженерам NASA необходимо соблюсти максимально возможную точность и аккуратность при выполнении работ, поскольку от этого зависит дальнейшее функционирование орбитальной обсерватории.

На сегодня смонтированы девять из 18 сегментов. Таким образом, зеркало собрано на 50 %. Если работы будут выполняться такими же темпами и дальше, то их завершения можно ожидать к концу января.

jw3.jpg

«Джеймс Уэбб» будет отправлен в космос при помощи ракеты-носителя «Ариан-5» (Ariane 5): старт намечен на октябрь 2018 года. К выполнению первых научных задач аппарат сможет приступить весной 2019-го.
 

Формалин

Уже освоился
Порадовали совсем молодые студенты, их вопросы и открытая высокоинтеллектуальная культура общения как с равным. И никакой показухи, никто никому не дает пососать, не кричит о батутах, люди самоотверженно заняты любимым делом.

 

soul

Местный
Заблокирован
Порадовали совсем молодые студенты, их вопросы и открытая высокоинтеллектуальная культура общения как с равным. И никакой показухи, никто никому не дает пососать, не кричит о батутах, люди самоотверженно заняты любимым делом.

mqdefault.jpg

Рогозин прикалывается, Псаки тупит

Дмитрий Рогозин предложил доставлять американских астронавтов на МКС с помощью батутов. Джен Псаки очень...
 
Сверху